• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Guo Fei, Lai Peng, Huang Faming, Liu Leilei, Wang Xiujuan, He Zhengyu, 2024. Literature Review and Research Progress of Landslide Susceptibility Mapping Based on Knowledge Graph. Earth Science, 49(5): 1584-1606. doi: 10.3799/dqkx.2023.058
    Citation: Guo Fei, Lai Peng, Huang Faming, Liu Leilei, Wang Xiujuan, He Zhengyu, 2024. Literature Review and Research Progress of Landslide Susceptibility Mapping Based on Knowledge Graph. Earth Science, 49(5): 1584-1606. doi: 10.3799/dqkx.2023.058

    Literature Review and Research Progress of Landslide Susceptibility Mapping Based on Knowledge Graph

    doi: 10.3799/dqkx.2023.058
    • Received Date: 2023-01-05
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • Landslide susceptibility mapping (LSM) is the foundation and critical part of landslide risk assessment. The bibliometric analysis of LSM literature can be applied to quantitatively analyze the research progress and development trend. The result will provide references for geological hazard risk assessment in China. In this study, based on the Web of Science and CNKI databases, the CiteSpace visual knowledge graph analysis tool has been used to carry out bibliometric analysis of LSM literature from 1985 to 2022. Moreover, the LDA analysis has been conducted on the abstract to subdivide the research in this field. The results show that: (1) LSM is still a research hotspot at present. In China, there are a large number of studies and international cooperation about LSM. (2) Four of the top 10 authors in the number of published papers on LSM are from China. The institution that has published the most papers on LSM is the Chinese Academy of Sciences. The Chinese Journal of Geological Hazard and Control is the most popular Chinese journal and the Natural Hazardsis the most popular English journals to publish LSM papers. The research on the subject of LSM has been substantially funded by the National Natural Science Foundation of China and the National Land and Resources Survey Project. (3) In the past five years, machine learning models (including deep learning, etc.) have been widely used as the most popular LSM models. (4) In order to achieve the simplification and intelligence of landslide susceptibility modeling and to improve the accuracy and practicability of the LSM results, the following parts of LSM, including the landslide inventory, conditioning factors, assessment unit, assessment model, connection methods and accuracy verification, need to be deeply explored in further studies.

       

    • loading
    • Abedini, M., Ghasemyan, B., Rezaei Mogaddam, M. H., 2017. Landslide Susceptibility Mapping in Bijar City, Kurdistan Province, Iran: A Comparative Study by Logistic Regression and AHP Models. Environmental Earth Sciences, 76(8): 308. https://doi.org/10.1007/s12665-017-6502-3
      Abedini, M., Tulabi, S., 2018. Assessing LNRF, FR, and AHP Models in Landslide Susceptibility Mapping Index: A Comparative Study of Nojian Watershed in Lorestan Province, Iran. Environmental Earth Sciences, 77(11): 405. https://doi.org/10.1007/s12665-018-7524-1
      Ado, M., Amitab, K., Maji, A. K., et al., 2022. Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sensing, 14(13): 3029. https://doi.org/10.3390/rs14133029
      Ai, L., Yang, B. Y., Guo, L., 2020. Landslide Ease Based on Different Models and Elements Comparison of Development Evaluation. Geospatial Information, 18(6): 117-121 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4623.2020.06.030
      Alvioli, M., Marchesini, I., Reichenbach, P., et al., 2016. Automatic Delineation of Geomorphological Slope Units with R. Slopeunits V1.0 and Their Optimization for Landslide Susceptibility Modeling. Geoscientific Model Development, 9(11): 3975-3991. https://doi.org/10.5194/gmd-9-3975-2016
      Bourenane, H., Bouhadad, Y., 2021. Impact of Land Use Changes on Landslides Occurrence in Urban Area: The Case of the Constantine City (NE Algeria). Geotechnical and Geological Engineering, 39(6): 1-21. https://doi.org/10.1007/s10706-021-01768-1
      Brabb, E. E., 1985. Innovative Approaches to Landslide Hazard and Risk Mapping. In: 4th International Symposium on Landslides. Japan Landslide Society, Tokyo, 17-22.
      Bui, D. T., Tsangaratos, P., Nguyen, V. T., et al., 2020. Comparing the Prediction Performance of a Deep Learning Neural Network Model with Conventional Machine Learning Models in Landslide Susceptibility Assessment. CATENA, 188: 104426. https://doi.org/10.1016/j.catena.2019.104426
      Calderón-Guevara, W., Sánchez-Silva, M., Nitescu, B., et al., 2022. Comparative Review of Data-Driven Landslide Susceptibility Models: Case Study in the Eastern Andes Mountain Range of Colombia. Natural Hazards, 113(2): 1105-1132. https://doi.org/10.1007/s11069-022-05339-2
      Cama, M., Conoscenti, C., Lombardo, L., et al., 2016. Exploring Relationships between Grid Cell Size and Accuracy for Debris-Flow Susceptibility Models: A Test in the Giampilieri Catchment (Sicily, Italy). Environmental Earth Sciences, 75(3): 238. https://doi.org/10.1007/s12665-015-5047-6
      Chang, M., Zhou, Y., Zhou, C., et al., 2021. Coseismic Landslides Induced by the 2018 Mw 6.6 Iburi, Japan, Earthquake: Spatial Distribution, Key Factors Weight, and Susceptibility Regionalization. Landslides, 18(2): 755-772. https://doi.org/10.1007/s10346-020-01522-3
      Chang, Z. L., Huang, F. M., Jiang, S. H., et al., 2023. Slope Unit Extraction and Landslide Susceptibility Prediction Using Multi-Scale Segmentation Method. Advanced Engineering Sciences, 55(1): 184-195 (in Chinese with English abstract).
      Chen, T., Zhu, L., Niu, R. Q., et al., 2020. Mapping Landslide Susceptibility at the Three Gorges Reservoir, China, Using Gradient Boosting Decision Tree, Random Forest and Information Value Models. Journal of Mountain Science, 17(3): 670-685. https://doi.org/10.1007/s11629-019-5839-3
      Chen, W., Yan, X. S., Zhao, Z., et al., 2019. Spatial Prediction of Landslide Susceptibility Using Data Mining-Based Kernel Logistic Regression, Naive Bayes and RBF Network Models for the Long County Area (China). Bulletin of Engineering Geology and the Environment, 78(1): 247-266. https://doi.org/10.1007/s10064-018-1256-z
      Chen, Y., Dong, J. L., Guo, F., et al., 2022. Review of Landslide Susceptibility Assessment Based on Knowledge Mapping. Stochastic Environmental Research and Risk Assessment, 36(9): 2399-2417. https://doi.org/10.1007/s00477-021-02165-z
      Chiessi, V., Toti, S., Vitale, V., 2016. Landslide Susceptibility Assessment Using Conditional Analysis and Rare Events Logistics Regression: A Case-Study in the Antrodoco Area (Rieti, Italy). Journal of Geoscience and Environment Protection, 4(12): 1-21. https://doi.org/10.4236/gep.2016.412001
      Chung, C. J. F., Fabbri, A. G., 2003. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Natural Hazards, 30(3): 451-472. https://doi.org/10.1023/B: NHAZ.0000007172.62651.2b doi: 10.1023/B:NHAZ.0000007172.62651.2b
      Corominas, J., van Westen, C., Frattini, P., et al., 2014. Recommendations for the Quantitative Analysis of Landslide Risk. Bulletin of Engineering Geology and the Environment, 73(2): 209-263. https://doi.org/10.1007/s10064-013-0538-8
      Di Napoli, M., Carotenuto, F., Cevasco, A., et al., 2020. Machine Learning Ensemble Modelling as a Tool to Improve Landslide Susceptibility Mapping Reliability. Landslides, 17(8): 1897-1914. https://doi.org/10.1007/s10346-020-01392-9
      do Pinho, T. M., Augusto Filho, O., 2022. Landslide Susceptibility Mapping Using the Infinite Slope, SHALSTAB, SINMAP, and TRIGRS Models in Serra do Mar, Brazil. Journal of Mountain Science, 19(4): 1018-1036. https://doi.org/10.1007/s11629-021-7057-z
      Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657-1674 (in Chinese with English abstract).
      Dou, J., Yunus, A. P., Bui, D. T., et al., 2020a. Improved Landslide Assessment Using Support Vector Machine with Bagging, Boosting, and Stacking Ensemble Machine Learning Framework in a Mountainous Watershed, Japan. Landslides, 17(3): 641-658. https://doi.org/10.1007/s10346-019-01286-5
      Dou, J., Yunus, A. P., Merghadi, A., et al., 2020b. Different Sampling Strategies for Predicting Landslide Susceptibilities are Deemed Less Consequential with Deep Learning. Science of the Total Environment, 720: 137320. https://doi.org/10.1016/j.scitotenv.2020.137320
      Dou, J., Yunus, A. P., Tien Bui, D., et al., 2019a. Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 662: 332-346. https://doi.org/10.1016/j.scitotenv.2019.01.221
      Dou, J., Yunus, A. P., Tien Bui, D., et al., 2019b. Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing, 11(6): 638. https://doi.org/10.3390/rs11060638
      Dou, J., Yunus, A. P., Xu, Y. R., et al., 2019c. Torrential Rainfall-Triggered Shallow Landslide Characteristics and Susceptibility Assessment Using Ensemble Data-Driven Models in the Dongjiang Reservoir Watershed, China. Natural Hazards, 97(2): 579-609. https://doi.org/10.1007/s11069-019-03659-4
      Du, J., Glade, T., Woldai, T., et al., 2020. Landslide Susceptibility Assessment Based on an Incomplete Landslide Inventory in the Jilong Valley, Tibet, Chinese Himalayas. Engineering Geology, 270: 105572. https://doi.org/10.1016/j.enggeo.2020.105572
      Du, Z. Q., Li, Y., Zhang, Y. T., et al., 2020. Knowledge Graph Construction Method on Natural Disaster Emergency. Geomatics and Information Science of Wuhan University, 45(9): 1344-1355 (in Chinese with English abstract).
      Đurić, U., Marjanović, M., Radić, Z., et al., 2019. Machine Learning Based Landslide Assessment of the Belgrade Metropolitan Area: Pixel Resolution Effects and a Cross-Scaling Concept. Engineering Geology, 256: 23-38. https://doi.org/10.1016/j.enggeo.2019.05.007
      Fang, Z. C., Wang Y., Duan, H. X., et al., 2022. Comparison of General Kernel, Multiple Kernel, Infinite Ensemble and Semi-Supervised Support Vector Machines for Landslide Susceptibility Prediction, 36: 3535-3556. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-022-02208-z
      Fang, Z. C., Wang, Y., Peng, L., et al., 2020. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Computers and Geosciences, 139: 104470. https://doi.org/10.1016/j.cageo.2020.104470
      Fell, R., Corominas, J., Bonnard, C., et al., 2008. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning. Engineering Geology, 102(3/4): 85-98. https://doi.org/10.1016/j.enggeo.2008.03.022
      Fleuchaus, P., Blum, P., Wilde, M., et al., 2021. Retrospective Evaluation of Landslide Susceptibility Maps and Review of Validation Practice. Environmental Earth Sciences, 80(15): 485. https://doi.org/10.1007/s12665- 021-09770-9 doi: 10.1007/s12665-021-09770-9
      Garosi, Y., Sheklabadi, M., Pourghasemi, H. R., et al., 2018. Comparison of Differences in Resolution and Sources of Controlling Factors for Gully Erosion Susceptibility Mapping. Geoderma, 330: 65-78. https://doi.org/10.1016/j.geoderma.2018.05.027
      Gholami, M., Ghachkanlu, E. N., Khosravi, K., et al., 2019. Landslide Prediction Capability by Comparison of Frequency Ratio, Fuzzy Gamma and Landslide Index Method. Journal of Earth System Science, 128(2): 42. https://doi.org/10.1007/s12040-018-1047-8
      Gholamy, A., Kreinovich, V., Kosheleva, O., 2018. Why 70/30 or 80/20 Relation between Training and Testing Sets: A Pedagogical Explanation. Departmental Technical Reports (CS), 1209.
      Guo, F., Lai, P., Chen, Y., et al., 2022. Influence of Different Environemental Factor Connection Methods on Bengagng Susceptibility Assessment. Bulletin of Soil and Water Conservation, 42(5): 123-130 (in Chinese with English abstract).
      Guo, J. Y., Guan, J., 2018. Global Research Output in Geological Engineering: A Bibliometric Analysis of Web of Science Publications. Journal of Engineering Geology, 26(5): 1397-1407 (in Chinese with English abstract).
      Guru, B., Veerappan, R., Sangma, F., et al., 2017. Comparison of Probabilistic and Expert-Based Models in Landslide Susceptibility Zonation Mapping in Part of Nilgiri District, Tamil Nadu, India. Spatial Information Research, 25(6): 757-768. https://doi.org/10.1007/s41324-017-0143-1
      Hong, H. Y., Tsangaratos, P., Ilia, I., et al., 2020. Introducing a Novel Multi-Layer Perceptron Network Based on Stochastic Gradient Descent Optimized by a Meta-Heuristic Algorithm for Landslide Susceptibility Mapping. Science of the Total Environment, 742: 140549. https://doi.org/10.1016/j.scitotenv.2020.140549
      Huang, F. M., Cao, Z. S., Guo, J. F., et al., 2020a. Comparisons of Heuristic, General Statistical and Machine Learning Models for Landslide Susceptibility Prediction and Mapping. CATENA, 191: 104580. https://doi.org/10.1016/j.catena.2020.104580
      Huang, F. M., Cao, Z. S., Jiang, S. H., et al., 2020b. Landslide Susceptibility Prediction Based on a Semi- Supervised Multiple-Layer Perceptron Model. Landslides, 17: 2919-2930. https://doi.org/10.1007/s10346-020-01473-9
      Huang, F. M., Cao, Y., Fan, X. M., et al., 2021a. Influence of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S2): 3227-3240 (in Chinese with English abstract).
      Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021b. Uncertainties of Landslide Susceptibility Prediction due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
      Huang, F. M., Pan, L. H., Yao, C., et al., 2021c. Landslide Susceptibility Prediction Modelling Based on Semi- Supervised Machine Learning. Journal of Zhejiang University (Engineering Science), 55(9): 1705-1713 (in Chinese with English abstract).
      Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
      Huang, F. M., Hu, S. Y., Yan, X. Y., et al., 2022a. Landslide Susceptibility Prediction and Identification of Its Main Environmental Factors Based on Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract).
      Huang, F. M., Li, J. F., Wang, J. Y., et al., 2022b. Modelling Rules of Landslide Susceptibility Prediction Considering the Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 44-59 (in Chinese with English abstract).
      Huang, F. M., Shi, Y., Ouyang, W. P., et al., 2022c. Landslide Susceptibility Prediction Modeling Based on Weight of Evidence and Chi-Square Automatic Interactive Detection Decision Tree. Journal of Civil and Environmental Engineering, 44(5): 16-28 (in Chinese with English abstract).
      Huang, F. M., Tao, S. Y., Chang, Z. L., et al., 2021. Efficient and Automatic Extraction of Slope Units Based on Multi-Scale Segmentation Method for Landslide Assessments. Landslides, 18(11): 3715-3731. https://doi.org/10.1007/s10346-021-01756-9
      Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract).
      Huang, Q. L., Chen, W., Tang, X. B., et al., 2017. Study on the Method of Slope Unit Zoning in Regional Geo- Hazards Risk Assessment. Journal of Natural Disasters, 26(5): 157-164 (in Chinese).
      Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
      Huang, Y. D., Xu, C., Zhang, X. J., et al., 2022. Bibliometric Analysis of Landslide Research Based on the WOS Database. Natural Hazards Research, 2(2): 49-61. https://doi.org/10.1016/j.nhres.2022.02.001
      Jacobs, L., Kervyn, M., Reichenbach, P., et al., 2020. Regional Susceptibility Assessments with Heterogeneous Landslide Information: Slope Unit-Vs. Pixel-Based Approach. Geomorphology, 356: 107084. https://doi.org/10.1016/j.geomorph.2020.107084
      Kadirhodjaev, A., Kadavi, P. R., Lee, C. W., et al., 2018. Analysis of the Relationships between Topographic Factors and Landslide Occurrence and Their Application to Landslide Susceptibility Mapping: A Case Study of Mingchukur, Uzbekistan. Geosciences Journal, 22(6): 1053-1067. https://doi.org/10.1007/s12303-018-0052-x
      Lee, J. H., Sameen, M. I., Pradhan, B., et al., 2018. Modeling Landslide Susceptibility in Data-Scarce Environments Using Optimized Data Mining and Statistical Methods. Geomorphology, 303: 284-298. https://doi.org/10.1016/j.geomorph.2017.12.007
      Lee, S., 2019. Current and Future Status of GIS-Based Landslide Susceptibility Mapping: A Literature Review. Korean Journal of Remote Sensing, 35(1): 179-193.
      Li, J., Zhou, Ch. H., 2003. Appropriate Grid Size for Terrain Based Landslide Risk Assessment in Lantau Island, Hong Kong. National Remote Sensing Bulletin, 7(2): 86-92, 161 (in Chinese).
      Li, P., Ye, H., Tan, S. C., 2021. Evaluation of Geological Hazards in Yongde County Based on Analytic Hierarchy Process. Research of Soil and Water Conservation, 28(5): 394-399, 406 (in Chinese with English abstract).
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
      Li, Y. W., Wang, X. M., Mao, H., 2020. Influence of Human Activity on Landslide Susceptibility Development in the Three Gorges Area. Natural Hazards, 104(3): 2115-2151. https://doi.org/10.1007/s11069-020-04264-6
      Lian, Z. P., Xu, Y., Fu, S., et al., 2020. Landslide Susceptibility Assessment Based on Multi-Model Fusion Method: A Case Study in Wufeng County, Hubei Province. Bulletin of Geological Science and Technology, 39(3): 178-186 (in Chinese with English abstract).
      Liang, Z., Wang, C. M., Duan, Z. J., et al., 2021. A Hybrid Model Consisting of Supervised and Unsupervised Learning for Landslide Susceptibility Mapping. Remote Sensing, 13(8): 1464. https://doi.org/10.3390/rs13081464
      Lima, P., Steger, S., Glade, T., 2021. Counteracting Flawed Landslide Data in Statistically Based Landslide Susceptibility Modelling for Very Large Areas: A National-Scale Assessment for Austria. Landslides, 18(11): 3531-3546. https://doi.org/10.1007/s10346-021-01693-7
      Lima, P., Steger, S., Glade, T., et al., 2022. Literature Review and Bibliometric Analysis on Data-Driven Assessment of Landslide Susceptibility. Journal of Mountain Science, 19(6): 1670-1698. https://doi.org/10.1007/s11629-021-7254-9
      Liu, T., Tan, J. M., Guo, F., et al., 2021. Research on the Method of Weight Correction for Landslide Susceptibility with Artificial Cutting Slope: A Case Study of Shadi Town, Ganzhou City. Journal of Natural Disasters, 30(5): 217-225 (in Chinese with English abstract).
      Lombardo, L., Mai, P. M., 2018. Presenting Logistic Regression-Based Landslide Susceptibility Results. Engineering Geology, 244: 14-24. https://doi.org/10.1016/j.enggeo.2018.07.019
      Lucchese, L. V., de Oliveira, G. G., Pedrollo, O. C., 2020. Attribute Selection Using Correlations and Principal Components for Artificial Neural Networks Employment for Landslide Susceptibility Assessment. Environmental Monitoring and Assessment, 192(2): 129. https://doi.org/10.1007/s10661-019-7968-0
      Luo, W., Liu, C. C., 2018. Innovative Landslide Susceptibility Mapping Supported by Geomorphon and Geographical Detector Methods. Landslides, 15(3): 465-474. https://doi.org/10.1007/s10346-017-0893-9
      Merghadi, A., Yunus, A. P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207: 103225. https://doi.org/10.1016/j.earscirev.2020.103225
      Moragues, S., Lenzano, M. G., Lanfri, M., et al., 2021. Analytic Hierarchy Process Applied to Landslide Susceptibility Mapping of the North Branch of Argentino Lake, Argentina. Natural Hazards, 105(1): 915-941. https://doi.org/10.1007/s11069-020-04343-8
      Pham, B. T., Van Dao, D., Acharya, T. D., et al., 2021. Performance Assessment of Artificial Neural Network Using Chi-Square and Backward Elimination Feature Selection Methods for Landslide Susceptibility Analysis. Environmental Earth Sciences, 80(20): 686. https://doi.org/10.1007/s12665-021-09998-5
      Pourghasemi, H. R., Teimoori Yansari, Z., Panagos, P., et al., 2018. Analysis and Evaluation of Landslide Susceptibility: A Review on Articles Published during 2005-2016 (Periods of 2005-2012 and 2013-2016). Arabian Journal of Geosciences, 11(9): 193. https://doi.org/10.1007/s12517-018-3531-5
      Prakash, N., Manconi, A., Loew, S., 2020. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models. Remote Sensing, 12(3): 346. https://doi.org/10.3390/rs12030346
      Reichenbach, P., Rossi, M., Malamud, B. D., et al., 2018. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180: 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001
      Robinson, T. R., Rosser, N. J., Densmore, A. L., et al., 2017. Rapid Post-Earthquake Modelling of Coseismic Landslide Intensity and Distribution for Emergency Response Decision Support. Natural Hazards and Earth System Sciences, 17(9): 1521-1540. https://doi.org/10.5194/nhess-17-1521-2017
      Sheng, M. Q., Liu, Z. X., Zhang, X. Q., et al., 2021. Landslide Susceptibility Prediction Based on Frequency Ratio Analysis and Support Vector Machine. Science Technology and Engineering, 21(25): 10620-10628 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2021.25.009
      Shinoda, M., Miyata, Y., Kurokawa, U., et al., 2019. Regional Landslide Susceptibility Following the 2016 Kumamoto Earthquake Using Back-Calculated Geomaterial Strength Parameters. Landslides, 16(8): 1497-1516. https://doi.org/10.1007/s10346-019-01171-1
      Shirzadi, A., Solaimani, K., Roshan, M. H., et al., 2019. Uncertainties of Prediction Accuracy in Shallow Landslide Modeling: Sample Size and Raster Resolution. CATENA, 178: 172-188. https://doi.org/10.1016/j.catena.2019.03.017
      Sun, D. L., Shi, S. X., Wen, H. J., et al., 2021. A Hybrid Optimization Method of Factor Screening Predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology, 379: 107623. https://doi.org/10.1016/j.geomorph.2021.107623
      Sun, D. L., Wen, H. J., Wang, D. Z., et al., 2020a. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201
      Sun, D. L., Xu, J. H., Wen, H. J., et al., 2020b. An Optimized Random Forest Model and Its Generalization Ability in Landslide Susceptibility Mapping: Application in Two Areas of Three Gorges Reservoir, China. Journal of Earth Science, 31(6): 1068-1086. https://doi.org/10.1007/s12583-020-1072-9
      Tang, H. M., Li, C. D., Hu, X. L., et al., 2015. Evolution Characteristics of the Huangtupo Landslide Based on in Situ Tunneling and Monitoring. Landslides, 12(3): 511-521. https://doi.org/10.1007/s10346-014-0500-2
      Tanyu, B. F., Abbaspour, A., Alimohammadlou, Y., et al., 2021. Landslide Susceptibility Analyses Using Random Forest, C4.5, and C5.0 with Balanced and Unbalanced Datasets. CATENA, 203: 105355. https://doi.org/10.1016/j.catena.2021.105355
      Tehrani, F. S., Calvello, M., Liu, Z. Q., et al., 2022. Machine Learning and Landslide Studies: Recent Advances and Applications. Natural Hazards, 114(2): 1197-1245. https://doi.org/10.1007/s11069-022-05423-7
      Tian, N. M., Lan, H. X., Wu, Y. M., et al., 2020. Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction. Journal of Geo-Information Science, 22(12): 2304-2316 (in Chinese with English abstract).
      Tian, Y., Ju, N. P., Xie, M. L., et al., 2022. Analysis of the Impact of Landslide Cataloguing Expression Patterns on the Evaluation Results of Landslide Susceptibility. Journal of Chengdu University of Technology (Science & Technology Edition), 49(5): 606-615 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2022.05.10
      Tie, Y. B., Xu, W., Xiang, B. L., et al., 2022. The Thoughts on Construction of "Double-Control of Point and Zone" System of Geological Hazard Risk in Southwest China. The Chinese Journal of Geological Hazard and Control, 33(3): 106-113 (in Chinese with English abstract).
      Tie, Y. B., Xu, Y., Zhang, Y., et al., 2020. Main Progresses and Achievements of Geological Hazards Survey in Hilly Area of Southern China. Geological Survey of China, 7(2): 1-12 (in Chinese with English abstract).
      Tsangaratos, P., Ilia, I., 2016. Comparison of a Logistic Regression and Naïve Bayes Classifier in Landslide Susceptibility Assessments: The Influence of Models Complexity and Training Dataset Size. CATENA, 145: 164-179. https://doi.org/10.1016/j.catena.2016.06.004
      Ullah, K., Wang, Y., Fang, Z. C., et al., 2022. Multi-Hazard Susceptibility Mapping Based on Convolutional Neural Networks. Geoscience Frontiers, 13: 101425. http://doi-org/10.1016/j.gsf.2022.101425 doi: 10.1016/j.gsf.2022.101425
      Wang, K., Zhang, S. J., Delgado-Téllez, R., et al., 2019a. A New Slope Unit Extraction Method for Regional Landslide Analysis Based on Morphological Image Analysis. Bulletin of Engineering Geology and the Environment, 78(6): 4139-4151. https://doi.org/10.1007/s10064-018-1389-0
      Wang, Y., Fang, Z. C., Hong, H. Y., 2019b. Comparison of Convolutional Neural Networks for Landslide Susceptibility Mapping in Yanshan County, China. Science of the Total Environment, 666: 975-993. https://doi.org/10.1016/j.scitotenv.2019.02.263
      Wang, K., Zhang, S. J., Wei, F. Q., 2020. Research Progress and Prospects of Extraction Methods for Slope Elements. Journal of Yangtze River Scientific Research Institute, 37(6): 85-93 (in Chinese with English abstract).
      Wang, Y., Fang, Z. C., Niu, R. Q., et al., 2021. Landslide Susceptibility Analysis Based on Deep Learning. Journal of Geo-Information Science, 23(12): 2244-2260 (in Chinese with English abstract).
      Wang, Y., Fang, Z. C., Wang, M., et al., 2020. Comparative Study of Landslide Susceptibility Mapping with Different Recurrent Neural Networks. Computers & Geosciences, 138: 104445. https://doi.org/10.1016/j.cageo.2020.104445
      Weidner, L., Oommen, T., Escobar-Wolf, R., et al., 2018. Regional-Scale Back-Analysis Using TRIGRS: an Approach to Advance Landslide Hazard Modeling and Prediction in Sparse Data Regions. Landslides, 15(12): 2343-2356. https://doi.org/10.1007/s10346-018-1044-7
      Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
      Wu, X. L., Ren, F., Niu, R. Q., et al., 2013. Landslide Spatial Prediction Based on Slope Units and Support Vector Machines. Geomatics and Information Science of Wuhan University, 38(12): 1499-1503 (in Chinese).
      Wu, X. L., Yang, J. Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232 (in Chinese with English abstract).
      Xia, D., Tang, H. M., Sun, S. X., et al., 2022. Landslide Susceptibility Mapping Based on the Germinal Center Optimization Algorithm and Support Vector Classification. Remote Sensing, 14(11): 2707. https://doi.org/10.3390/rs14112707
      Xie, M. W., Esaki, T., Zhou, G. Y., 2004. GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model. Natural Hazards, 33(2): 265-282. https://doi.org/10.1023/B: NHAZ.0000037036.01850.0d doi: 10.1023/B:NHAZ.0000037036.01850.0d
      Xu, G. Q., Zhou, Y., 2017. Study on the Subdivision Method of Geological Disasters in the Residential Area Based on Geomorphology Unit. World Nonferrous Metals, (11): 137-138 (in Chinese with English abstract).
      Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966 (in Chinese with English abstract).
      Yan, G., Liang, S. Y., Zhao, H. L., 2017. An Approach to Improving Slope Unit Division Using GIS Technique. Scientia Geographica Sinica, 37(11): 1764-1770 (in Chinese with English abstract).
      Yang, C., 2016. Assessing the Landslide Susceptibility of Watershed Units of Fujian Province Based on GIS (Dissertation). Fujian Normal University, Fuzhou (in Chinese with English abstract).
      Ye, R. Q., Li, S. Y., Guo, F., et al., 2021. Rs and GIS Analysis on Relationship between Landslide Susceptibility and Land Use Change in Three Gorges Reservoir Area. Journal of Engineering Geology, 29(3): 724-733 (in Chinese with English abstract).
      Zhang, M. S., Xue, Q., Jia, J., et al., 2019. Methods and Practices for the Investigation and Risk Assessment of Geo-Hazards in Mountainous Towns. Northwestern Geology, 52(2): 125-135 (in Chinese with English abstract).
      Zhang, Q., Zhao, C. Y., Chen, X. R., 2022. Technical Progress and Development Trend of Geological Hazards Early Identification with Multi-Source Remote Sensing. Acta Geodaetica et Cartographica Sinica, 51(6): 885-896 (in Chinese with English abstract).
      Zhang, W. G., He, Y. W., Wang, L. Q., et al., 2023. A Machine Learning Method for Landslide Susceptibility Analysis Based on Water System Zoning: A Case Study of Fengjie County, Chongqing. Earth Science, 48(5): 2024-2038 (in Chinese with English abstract).
      Zhao, Y., Wang, R., Jiang, Y. J., et al., 2019. GIS-Based Logistic Regression for Rainfall-Induced Landslide Susceptibility Mapping under Different Grid Sizes in Yueqing, Southeastern China. Engineering Geology, 259: 105147. https://doi.org/10.1016/j.enggeo.2019.105147
      Zhou, X. T., 2023. Recognition and Dynamic Susceptibility Assessment of Landslides Based on Multi-Source Data (Dissertation). East China University of Technology, Nanchang (in Chinese with English abstract).
      Zhou, X. Z., Wen, H. J., Li, Z. W., et al., 2022. An Interpretable Model for the Susceptibility of Rainfall-Induced Shallow Landslides Based on SHAP and XGBoost. Geocarto International, 37(26): 13419-13450. https://doi.org/10.1080/10106049.2022.2076928
      艾力, 杨冰玉, 郭丽, 2020. 基于不同模型和单元的滑坡易发性评价比较. 地理空间信息, 18(6): 117-121. doi: 10.3969/j.issn.1672-4623.2020.06.030
      常志璐, 黄发明, 蒋水华, 等, 2023. 基于多尺度分割方法的斜坡单元划分及滑坡易发性预测. 工程科学与技术, 55(1): 184-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202301016.htm
      窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学, 48(5): 1657-1674. doi: 10.3799/dqkx.2022.419
      杜志强, 李钰, 张叶廷, 等, 2020. 自然灾害应急知识图谱构建方法研究. 武汉大学学报(信息科学版), 45(9): 1344-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202009004.htm
      郭飞, 赖鹏, 陈洋, 等, 2022. 不同环境因子联接方法对崩岗易发性评价的影响. 水土保持通报, 42(5): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202205016.htm
      郭静芸, 关静, 2018. 基于Web of Science数据库的地质工程研究文献计量分析. 工程地质学报, 26(5): 1397-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106015.htm
      黄发明, 曹昱, 范宣梅, 等, 2021a. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S2): 3227-3240. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2023.htm
      黄发明, 陈佳武, 唐志鹏, 等, 2021b. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
      黄发明, 潘李含, 姚池, 等, 2021c. 基于半监督机器学习的滑坡易发性预测建模. 浙江大学学报(工学版), 55(9): 1705-1713. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202109012.htm
      黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247
      黄发明, 胡松雁, 闫学涯, 等, 2022a. 基于机器学习的滑坡易发性预测建模及其主控因子识别. 地质科技通报, 41(2): 79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202008.htm
      黄发明, 李金凤, 王俊宇, 等, 2022b. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律. 地质科技通报, 41(2): 44-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202005.htm
      黄发明, 石雨, 欧阳慰平, 等, 2022c. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测. 土木与环境工程学报(中英文), 44(5): 16-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202205003.htm
      黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
      黄启乐, 陈伟, 唐绪波, 等, 2017. 区域地质灾害评价中斜坡单元划分方法研究. 自然灾害学报, 26(5): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201705018.htm
      黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏铁路沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
      李军, 周成虎, 2003. 基于栅格GIS滑坡风险评价方法中格网大小选取分析. 遥感学报, 7(2): 86-92, 161. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200302001.htm
      李萍, 叶辉, 谈树成, 2021. 基于层次分析法的永德县地质灾害易发性评价. 水土保持研究, 28(5): 394-399, 406. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202105055.htm
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      连志鹏, 徐勇, 付圣, 等, 2020. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例. 地质科技通报, 39(3): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003022.htm
      刘婷, 谭建民, 郭飞, 等, 2021. 人工切坡下滑坡易发性评价中权重修正方法研究: 以赣州市沙地镇为例. 自然灾害学报, 30(5): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202105021.htm
      盛明强, 刘梓轩, 张晓晴, 等, 2021. 基于频率比联接法和支持向量机的滑坡易发性预测. 科学技术与工程, 21(25): 10620-10628. doi: 10.3969/j.issn.1671-1815.2021.25.009
      田乃满, 兰恒星, 伍宇明, 等, 2020. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比. 地球信息科学学报, 22(12): 2304-2316. doi: 10.12082/dqxxkx.2020.190766
      田媛, 巨能攀, 解明礼, 等, 2022. 滑坡编录表达模式对易发性评价结果的影响. 成都理工大学学报(自然科学版), 49(5) : 606-615. doi: 10.3969/j.issn.1671-9727.2022.05.10
      铁永波, 徐伟, 向炳霖, 等, 2022. 西南地区地质灾害风险"点面双控" 体系构建与思考. 中国地质灾害与防治学报, 33(3): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202203012.htm
      铁永波, 徐勇, 张勇, 等, 2020. 南方山地丘陵区地质灾害调查工程主要进展与成果. 中国地质调查, 7(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202002001.htm
      王凯, 张少杰, 韦方强, 2020. 斜坡单元提取方法研究进展和展望. 长江科学院院报, 37(6): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202006019.htm
      王毅, 方志策, 牛瑞卿, 等, 2021. 基于深度学习的滑坡灾害易发性分析. 地球信息科学学报, 23(12): 2244-2260. doi: 10.12082/dqxxkx.2021.210057
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      武雪玲, 任福, 牛瑞卿, 等, 2013. 斜坡单元支持下的滑坡易发性评价支持向量机模型. 武汉大学学报(信息科学版), 38(12): 1499-1503. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201312025.htm
      武雪玲, 杨经宇, 牛瑞卿, 2020. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法. 武汉大学学报(信息科学版), 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
      许国庆, 周宇, 2017. 基于地貌单元的小区地质灾害易发性分区方法研究. 世界有色金属, (11): 137-138. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201711082.htm
      许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
      颜阁, 梁收运, 赵红亮, 2017. 基于GIS的斜坡单元划分方法改进与实现. 地理科学, 37(11): 1764-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201711019.htm
      杨城, 2016. 基于GIS的福建省流域单元滑坡敏感性研究(硕士学位论文). 福州: 福建师范大学.
      叶润青, 李士垚, 郭飞, 等, 2021. 基于RS和GIS的三峡库区滑坡易发程度与土地利用变化的关系研究. 工程地质学报, 29(3): 724-733. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103015.htm
      张茂省, 薛强, 贾俊, 等, 2019. 山区城镇地质灾害调查与风险评价方法及实践. 西北地质, 52(2): 125-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201902017.htm
      张勤, 赵超英, 陈雪蓉, 2022. 多源遥感地质灾害早期识别技术进展与发展趋势. 测绘学报, 51(6): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206010.htm
      仉文岗, 何昱苇, 王鲁琦, 等, 2023. 基于水系分区的滑坡易发性机器学习分析方法: 以重庆市奉节县为例. 地球科学, 48(5): 2024-2038. doi: 10.3799/dqkx.2022.309
      周晓亭, 2023. 基于多源数据的滑坡识别及其易发性动态评价(博士学位论文). 南昌: 东华理工大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(8)

      Article views (1273) PDF downloads(160) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return