• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Li Linxin, Jiang Hongchen, Huang Liuqin, 2024. Multiple Environmental Factors Affect the Nitrite Removal Efficiency of Chemo-Denitrification by Fe2+. Earth Science, 49(8): 2891-2900. doi: 10.3799/dqkx.2023.060
    Citation: Li Linxin, Jiang Hongchen, Huang Liuqin, 2024. Multiple Environmental Factors Affect the Nitrite Removal Efficiency of Chemo-Denitrification by Fe2+. Earth Science, 49(8): 2891-2900. doi: 10.3799/dqkx.2023.060

    Multiple Environmental Factors Affect the Nitrite Removal Efficiency of Chemo-Denitrification by Fe2+

    doi: 10.3799/dqkx.2023.060
    • Received Date: 2023-03-15
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • To improve the efficiency of the NO2- removal process using Fe2+ as a reducing agent in practical applications, this research designed three environmental factors of exogenous anions, Fe2+ concentration, and reaction temperature to investigate their effects on the chemical reduction of NO2- by Fe2+. The results showed that although increasing the Fe2+ concentration could significantly promote the removal rate of NO2-, it also reduced the utilization rate of Fe2+. In addition, raising the temperature and adding HCO3-/CO32- could both increase the removal rate and extent of NO2-. The type of by-product formed by iron oxidation was also regulated by temperature and HCO3-. At temperatures below 55 ℃ (such as 30 ℃ and 40 ℃), the by-product of iron oxidation was mainly goethite and magnetite. At temperatures above 55 ℃, Magnetite was the only by-product. But magnetite can be formed at a lower temperature (40 ℃) with HCO3-. These results provide experimental references for improving the application mode and by-product secondary treatment utilization of Fe2+-based Chemo-denitrification and provide theoretical basis in actual engineering.

       

    • loading
    • Ai, X. F., Wang, H. L., Chen, X. L., et al., 2014. Experiment Research on the Oblem of Nitrite Accumulation in Groundwater during Biological Denitrification. Water Pollution Control, 32: 33-36(in Chinese with English abstract).
      Bouwman, A. F., Boumans, L. J. M., Batjes, N. H., 2002. Emissions of N2O and NO from Fertilized Fields: Summary of Available Measurement Data. Global Biogeochemical Cycles, 16(4): 6-1-6-13. https://doi.org/10.1029/2001gb001811
      Buchwald, C., Grabb, K., Hansel, C. M., et al., 2016. Constraining the Role of Iron in Environmental Nitrogen Transformations: Dual Stable Isotope Systematics of Abiotic NO2- Reduction by Fe(Ⅱ) and its Production of N2O. Geochimica et Cosmochimica Acta, 186: 1-12. https://doi.org/10.1016/j.gca.2016.04.041
      Buerge, I. J., Hug, S. J., 1999. Influence of Mineral Surfaces on Chromium(Ⅵ) Reduction by Iron(Ⅱ). Environmental Science & Technology, 33(23): 4285-4291. https://doi.org/10.1021/es981297s
      Buessecker, S., Imanaka, H., Ely, T., et al., 2022. Mineral-Catalysed Formation of Marine NO and N2O on the Anoxic Early Earth. Nature Geoscience, 15(12): 1056-1063. https://doi.org/10.1038/s41561-022-01089-9
      Chen, D. D., Liu, T. X., Li, X. M., et al., 2018. Biological and Chemical Processes of Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation by Pseudogulbenkiania Sp. Strain 2002. Chemical Geology, 476(4): 59-69. https://doi.org/10.1016/j.chemgeo.2017.11.004
      Chen, G. J., Zhao, W. Q., Yang, Y., et al., 2021. Chemodenitrification by Fe(Ⅱ) and Nitrite: Effects of Temperature and Dual N O Isotope Fractionation. Chemical Geology, 575(1): 120258. https://doi.org/10.1016/j.chemgeo.2021.120258
      Chen, Q., Ni, J. R., Ma, T., et al., 2015. Bioaugmentation Treatment of Municipal Wastewater with Heterotrophic-Aerobic Nitrogen Removal Bacteria in a Pilot-Scale SBR. Bioresource Technology, 183: 25-32. https://doi.org/10.1016/j.biortech.2015.02.022
      Cheng, C., Phipps, D., Alkhaddar, R. M., 2006. Thermophilic Aerobic Wastewater Treatment of Waste Metalworking Fluids. Water and Environment Journal, 20(4): 227-232. https://doi.org/10.1111/j.1747-6593.2005.00010.x
      Cooper, D. C., Picardal, F. W., Schimmelmann, A., et al., 2003. Chemical and Biological Interactions during Nitrate and Goethite Reduction by Shewanella Putrefaciens 200. Applied and Environmental Microbiology, 69(6): 3517-3525. https://doi.org/10.1128/aem.69.6.3517-3525.2003
      Dopffel, N., Stein, J., Jamieson, J., et al., 2021. Temperature Dependence of Nitrate-Reducing Fe(Ⅱ) Oxidation by Acidovorax Strain BoFeN1-Evaluating the Role of Enzymatic Vs. Abiotic Fe(Ⅱ) Oxidation by Nitrite. FEMS Microbiology Ecology, 97(12): 1-15. https://doi.org/10.1093/femsec/fiab155
      Fahrner, S., 2002. Groundwater Nitrate Removal Using a Bioremediation Trench (Dissertation). University of Western Australia, Perth, 1-86.
      Fanning, J., 2000. The Chemical Reduction of Nitrate in Aqueous Solution. Coordination Chemistry Reviews, 199(1): 159-179. https://doi.org/10.1016/s0010-8545(99)00143-5
      Guo, J. H., Liu, X. J., Zhang, Y., et al., 2010. Significant Acidification in Major Chinese Croplands. Science, 327(5968): 1008-1010. https://doi.org/10.1126/science.1182570
      Hu, J. H., Duan, J. C., Gao, Y., et al., 2022. Effects of Nitrite Nitrogen on Hepatoenterocytosis of Shrimp Infected with Ridgetail White Shrimp. Fishweries Science, 41(4): 664-669 (in Chinese).
      Jones, L. C., Peters, B., Lezama Pacheco, J. S., et al., 2015. Stable Isotopes and Iron Oxide Mineral Products as Markers of Chemodenitrification. . Environmental Science & Technology, 49(6): 3444-3452. https://doi.org/10.1021/es504862x
      Kampschreur, M. J., Kleerebezem, R., de Vet, W. W. J. M., et al., 2011. Reduced Iron Induced Nitric Oxide and Nitrous Oxide Emission. Water Research, 45(18): 5945-5952. https://doi.org/10.1016/j.watres.2011.08.056
      Keeney, D. R., Fillery, I. R., Marx, G. P., 1979. Effect of Temperature on the Gaseous Nitrogen Products of Denitrification in a Silt Loam Soil. Soil Science Society of America Journal, 43(6): 1124-1128. https://doi.org/10.2136/sssaj1979.03615995004300060012x
      Klueglein, N., Kappler, A., 2013. Abiotic Oxidation of Fe(Ⅱ) by Reactive Nitrogen Species in Cultures of the Nitrate-Reducing Fe(Ⅱ) Oxidizer Acidovorax Sp. Bofen1-Questioning the Existence of Enzymatic Fe(Ⅱ) Oxidation. Geobiology, 11(2): 180-90. https://doi.org/10.1111/gbi.12019.
      Kopf, S. H., Henny, C., Newman, D. K., 2013. Ligand-Enhanced Abiotic Iron Oxidation and the Effects of Chemical Versus Biological Iron Cycling in Anoxic Environments. Environmental Science & Technology, 47(6): 2602-2611. https://doi.org/10.1021/es3049459
      Li, Z., Sun, Q., Gao, M. Y., 2004. Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4. Angewandte Chemie International Edition, 44(1): 123-126. https://doi.org/10.1002/anie.200460715
      Lin, M. D., Yu, J. J., Liu, X. Q., et al., 2021. Abnormalities, Mechanisms and Effects of Nitrite Nitrogen, Ammonia Nitrogen and Phosphate in Sansha Bay. Earth Science, 46(11): 4107-4117 (in Chinese with English abstract).
      Liu, H. B., Chen, T. H., Frost, R. L., 2014. An Overview of the Role of Goethite Surfaces in the Environment. Chemosphere, 103(84): 1-11. https://doi.org/10.1016/j.chemosphere.2013.11.065
      Liu, T. X., Chen, D. D., Luo, X. B., et al., 2019. Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation: Quantification of Chemodenitrification and Biological Reactions. Geochimica et Cosmochimica Acta, 256: 97-115. https://doi.org/10.1016/j.gca.2018.06.040
      Liu, Y. Q., Phenrat, T., Lowry, G. V., 2007. Effect of TCE Concentration and Dissolved Groundwater Solutes on NZVI-Promoted TCE Dechlorination and H2 Evolution. Environmental Science & Technology, 41(22): 7881-7887. https://doi.org/10.1021/es0711967
      Melendres, C. A., Pankuch, M., Li, Y. S., et al., 1992. Surface Enhanced Raman Spectroelectrochemical Studies of the Corrosion Films on Iron and Chromium in Aqueous Solution Environments. Electrochimica Acta, 37(15): 2747-2754. https://doi.org/10.1016/0013-4686(92)85202-v
      Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347
      Moerland, M. J., Castañares Pérez, L., Ruiz Velasco Sobrino, M. E., et al., 2021. Thermophilic (55 ℃) and Hyper-Thermophilic (70 ℃) Anaerobic Digestion as Novel Treatment Technologies for Concentrated Black Water. Bioresource Technology, 340(1-3): 125705. https://doi.org/10.1016/j.biortech.2021.125705
      Nelson, D. W., Bremner, J. M., 1970. Gaseous Products of Nitrite Decomposition in Soils. Soil Biology and Biochemistry, 2(3): 203-IN8. https://doi.org/10.1016/0038-0717(70)90008-8
      Nikolić, A., Hultman, B., 2005. Chemical Denitrification for Nitrogen Removal from Landfill Leachate. Water Science and Technology, 52(10/11): 509-516. https://doi.org/10.2166/wst.2005.0730
      Nömmik, H., 1956. Investigations on Denitrification in Soil. Acta Agriculturae Scandinavica, 6(2): 195-228. https://doi.org/10.1080/00015125609433269
      Picetti, R., Deeney, M., Pastorino, S., et al., 2022. Nitrate and Nitrite Contamination in Drinking Water and Cancer Risk: A Systematic Review with Meta-Analysis. Environmental Research, 210: 112988. https://doi.org/10.1016/j.envres.2022.112988
      Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
      Saad, O. A. L. O., Conrad, R., 1993. Temperature Dependence of Nitrification, Denitrification, and Turnover of Nitric Oxide in Different Soils. Biology and Fertility of Soils, 15(1): 21-27. https://doi.org/10.1007/bf00336283
      Sørensen, J., Thorling, L., 1991. Stimulation by Lepidocrocite (7-FeOOH) of Fe(Ⅱ)-Dependent Nitrite Reduction. Geochimica et Cosmochimica Acta, 55(5): 1289-1294. https://doi.org/10.1016/0016-7037(91)90307-q
      Tan, Y. Q., Chen, M., Hao, Y. M., 2012. High Efficient Removal of Pb (Ⅱ) by Amino-Functionalized Fe3O4 Magnetic Nano-Particles. Chemical Engineering Journal, 191: 104-111. https://doi.org/10.1016/j.cej.2012.02.075
      Tang, C. L., Zhang, Z. Q., Sun, X. N., 2012. Effect of Common Ions on Nitrate Removal by Zero-Valent Iron from Alkaline Soil. Journal of Hazardous Materials, 231-232(2): 114-119. https://doi.org/10.1016/j.jhazmat.2012.06.042
      Thomas, C. R., 2021. Abiotic Reduction of Nitrite by Fe(Ⅱ): A Comparison of Rates and N₂O Production. Environmental Science, 23(10): 1531-1541. https://doi.org/10.1039/d1em00222h.
      Wang, Z., Jiang, Y. H., Awasthi, M. K., et al., 2018. Nitrate Removal by Combined Heterotrophic and Autotrophic Denitrification Processes: Impact of Coexistent Ions. Bioresource Technology, 250(2): 838-845. https://doi.org/10.1016/j.biortech.2017.12.009
      Weber, K. A., Picardal, F. W., Roden, E. E., 2001. Microbially Catalyzed Nitrate-Dependent Oxidation of Biogenic Solid-Phase Fe(Ⅱ) Compounds. Environmental Science & Technology, 35(8): 1644-1650. https://doi.org/10.1021/es0016598
      艾小凡, 王鹤立, 陈祥龙, 等, 2014. 地下水硝酸盐污染生物修复中的亚硝态氮积累研究. 环境工程, 32: 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201401010.htm
      胡吉卉, 段健诚, 高阳, 等, 2022. 亚硝态氮对虾肝肠胞虫感染脊尾白虾的影响. 水产科学, 41(4): 664-669. https://www.cnki.com.cn/Article/CJFDTOTAL-CHAN202204019.htm
      林沐东, 于俊杰, 刘晓强, 等, 2021. 三沙湾亚硝酸氮、氨氮、磷酸盐的异常、机制及影响. 地球科学, 46(11): 4107-4117. doi: 10.3799/dqkx.2020.368
      屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (418) PDF downloads(34) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return