Citation: | Yang Zesen, Chang Qixin, He Shengzhe, Liao Xirui, 2025. Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial-Alluvial Fan of an Alpine Watershed. Earth Science, 50(2): 687-698. doi: 10.3799/dqkx.2023.072 |
Anibas, C., Fleckenstein, J. H., Volze, N., et al., 2009. Transient or Steady-State? Using Vertical Temperature Profiles to Quantify Groundwater-Surface Water Exchange. Hydrological Processes, 23(15): 2165-2177. https://doi.org/10.1002/hyp.7289
|
Briggs, M. A., Lautz, L. K., McKenzie, J. M., et al., 2012. Using High-Resolution Distributed Temperature Sensing to Quantify Spatial and Temporal Variability in Vertical Hyporheic Flux. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR011227
|
Brown, L. E., Hannah, D. M., Milner, A. M., 2006. Thermal Variability and Stream Flow Permanency in an Alpine River System. River Research and Applications, 22(4): 493-501. https://doi.org/10.1002/rra.915
|
Carey, S. K., Woo, M. K., 2000. The Role of Soil Pipes as a Slope Runoff Mechanism, Subarctic Yukon, Canada. Journal of hydrology (Amsterdam), 233(1-4): 206-222. https://doi.org/10.1016/S0022-1694(00)00234-1
|
Chang, Q. X., Ma, R., Sun, Z. Y., et al., 2018. Using Isotopic and Geochemical Tracers to Determine the Contribution of Glacier-Snow Meltwater to Streamflow in a Partly Glacierized Alpine-Gorge Catchment in Northeastern Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): 10, 037-010, 056. https://doi.org/10.1029/2018JD028683
|
Chang, Q. X., 2019. Water Sources of Stream Runoff in Alpine Region and Their Seasonal Variations: A Case Study of Hulugou Catchment in the Headwaters of the Heihe River(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Journal of Earth Science, 47(11): 4196-4209(in Chinese with English abstract).
|
Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505
|
Evans, S. G., Ge, S., Voss, C. I., et al., 2018. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds. Water Resources Research, 54(3): 1599-1615. https://doi.org/10.1002/2017wr022098
|
Finger, D., Heinrich, G., Gobiet, A., et al., 2012. Projections of Future Water Resources and Their Uncertainty in a Glacierized Catchment in the Swiss Alps and the Subsequent Effects on Hydropower Production During the 21st Century. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR010733
|
Fu, Y. M., Dong, Y. H., Xiang, Z. F., et al., 2020. Advances of DTS-Based Heat Tracer Tests in Tharacterization of Groundwater Flow in Fractured Media. Advances in Science and Technology of Water Resources, 40(03): 86-94(in Chinese with English abstract).
|
Ge, M. Y., Ma, R., Sun, Z. Y., et al., 2018. Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River. Earth Science, 43(11): 4246-4255 (in Chinese with English abstract).
|
Ge, S., Wu, Q. B., Lu, N., et al., 2008. Groundwater in the Tibet Plateau, Western China. Geophysical Research Letters, 35(18). https://doi.org/10.1029/2008GL034809
|
Hu, Y. L., 2019. Impacts of the Groundwater Flow Path on the Patterns of Dissolved Organic Carbon Export in the Cold Alpine Area(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
|
Hu, Y. L., Ma, R., Wang, Y. X., et al., 2019. Using Hydrogeochemical Data to Trace Groundwater Flow Paths in a Cold Alpine Catchment. Hydrological Processes, 33(14): 1942-1960. https://doi.org/10.1002/hyp.13440
|
Kalbus, E., Reinstorf, F., Schirmer, M., 2006. Measuring Methods for Groundwater-Surface Water Interactions: AReview. Hydrology and Earth System Sciences, 10(6): 873-887. https://doi.org/10.5194/hess-10-873-2006
|
Käser, D., Hunkeler, D. 2016. Contribution of Alluvial Groundwater to the Outflow of Mountainous Catchments. Water Resources Research, 52(2): 680-697. https://doi.org/10.1002/2014WR016730
|
Killian, C. D., Asquith, W. H., Barlow, J. R. B., et al., 2019. Characterizing Groundwater and Surface-Water Interaction Using Hydrograph-Separation Techniques and Groundwater-Level Data throughout the Mississippi Delta, USA. Hydrogeology Journal, 27: 2167-2179. https://doi.org/10.1007/s10040-019-01981-6
|
Lay, H. L., Thomas, Z., Rouault, F., et al., 2019. Characterization of Diffuse Groundwater Inflows into Streamwater (Part Ⅰ: Spatial and Temporal Mapping Framework Based on Fiber Optic Distributed Temperature Sensing). Water, 11(11): 2389. https://doi.org/10.3390/w11112389
|
Lowry, C. S., Walker, J. F., Hunt, R. J., et al., 2007. Identifying Spatial Variability of Groundwater Discharge in a Wetland Stream Using a Distributed Temperature Sensor. Water Resources Research, 43(10). https://doi.org/10.1029/2007WR006145
|
Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions Between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033689. https://doi.org/10.1029/2020JD033689
|
Schornberg, C., Schmidt, C., Kalbus, E., et al., 2010. Simulating the Effects of Geologic Heterogeneity and Transient Boundary Conditions on Streambed Temperatures-Implications for Temperature-Based Water Flux Calculations. Advances in water resources, 33(11): 1309-1319. https://doi.org/10.1016/j.advwatres.2010.04.007
|
Selker, J. S., Thévenaz, L., Huwald, H., et al., 2006. Distributed Fiber-Optic Temperature Sensing for Hydrologic Systems. Water Resources Research, 42(12). https://doi.org/10.1029/2006WR005326
|
Unland, N. P., Cartwright, I., Andersen, M. S., et al., 2013. Investigating the Spatio-Temporal Variability in Groundwater and Surface Water Interactions: a Multi-Technique Approach. Hydrology and Earth System Sciences, 17: 3437-3453. https://doi.org/10.5194/hess-17-3437-2013
|
Xu, H. X., Xin Z. Y., Wang, X. Z., et al., 2011. Investigation and Study on Insect and the Fauna of Heihe Nature Reserve of Gansu Province. Journal of Gansu Forestry Science and Technology, 36(1): 19-24(in Chinese with English abstract).
|
Ye, R. Z., Chang, J., 2019. Study of Groundwater in Permafrost Regions of China: Status and Process. Journal of Glaciology and Geocryology, 41(01): 183-196(in Chinese with English abstract).
|
Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2022. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Tibet Plateau. Jornal of Earth Science, 49(3): 1177-1188(in Chinese with English abstract).
|
常启昕, 2019. 高寒山区河道径流水分来源及其季节变化规律——以黑河上游葫芦沟流域为例(博士学位论文). 武汉: 中国地质大学.
|
常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093
|
符韵梅, 董艳辉, 徐志方, 等, 2020. 分布式光纤温度示踪识别裂隙地下水流动研究进展. 水利水电科技进展, 40(03): 86-94.
|
葛孟琰, 马瑞, 孙自永, 等, 2018. 高寒山区河水与地下水相互作用的温度示踪: 以黑河上游葫芦沟流域为例. 地球科学, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203
|
胡雅璐, 2019. 地下水水流路径对高寒山区溶解性有机碳输出的控制作用研究(博士学位论文). 武汉: 中国地质大学.
|
王宗太, 2013. 基于第一次冰川编目的黑河流域冰川分布数据集. 国家青藏高原科学数据中心.
|
徐红霞, 辛中尧, 王香枝, 等, 2011. 甘肃黑河自然保护区昆虫调查及区系研究. 甘肃林业科技, 36(01): 19-24.
|
叶仁政, 常娟, 2019. 中国冻土地下水研究现状与进展综述. 冰川冻土, 41(01): 183-196.
|
赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流溶解性碳输出的特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
|