• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 2
    Feb.  2025
    Turn off MathJax
    Article Contents
    Yang Zesen, Chang Qixin, He Shengzhe, Liao Xirui, 2025. Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial-Alluvial Fan of an Alpine Watershed. Earth Science, 50(2): 687-698. doi: 10.3799/dqkx.2023.072
    Citation: Yang Zesen, Chang Qixin, He Shengzhe, Liao Xirui, 2025. Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial-Alluvial Fan of an Alpine Watershed. Earth Science, 50(2): 687-698. doi: 10.3799/dqkx.2023.072

    Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial-Alluvial Fan of an Alpine Watershed

    doi: 10.3799/dqkx.2023.072
    • Received Date: 2023-12-22
      Available Online: 2025-02-26
    • Publish Date: 2025-02-25
    • Conventional methods such as differential flow gauging, one-dimensional heat transport equations, and environmental isotopic and geochemical tracers are often used to study the interaction mechanism between groundwater and surface water in alpine watersheds. However, they can not accurately describe this mechanism on a small scale, such as the complex stream stretches of a piedmont fluvial-alluvial fan. Therefore, the piedmont fluvial-alluvial fan in the Hulugou Valley in the headwaters of the Heihe River was chosen as our study site. Discrete zones of groundwater discharge along the stream stretches from the east tributary to the mainstream were identified on the basis of variations in streambed temperature using a distributed temperature sensor (DTS). The DTS gives measurements of the spatial (±1 m) and temporal (10 min) variation of streambed temperature over a much larger reach of stream (~883 m) than previous methods. Results show that focused groundwater discharge has been identified in twelve points along the east tributary, and groundwater discharge in the mainstream has been dominated by diffuse flow. Combining the hydrogeology of this catchment, we build the conceptual model of interactions between groundwater and surface water in a piedmont fluvial-alluvial fan. The heterogeneity of fluvial-alluvial aquifers in the alpine watershed controls and impacts groundwater flow and its interaction with surface water. Furthermore, the impact's space-time scope will gradually increase with climate warming.

       

    • loading
    • Anibas, C., Fleckenstein, J. H., Volze, N., et al., 2009. Transient or Steady-State? Using Vertical Temperature Profiles to Quantify Groundwater-Surface Water Exchange. Hydrological Processes, 23(15): 2165-2177. https://doi.org/10.1002/hyp.7289
      Briggs, M. A., Lautz, L. K., McKenzie, J. M., et al., 2012. Using High-Resolution Distributed Temperature Sensing to Quantify Spatial and Temporal Variability in Vertical Hyporheic Flux. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR011227
      Brown, L. E., Hannah, D. M., Milner, A. M., 2006. Thermal Variability and Stream Flow Permanency in an Alpine River System. River Research and Applications, 22(4): 493-501. https://doi.org/10.1002/rra.915
      Carey, S. K., Woo, M. K., 2000. The Role of Soil Pipes as a Slope Runoff Mechanism, Subarctic Yukon, Canada. Journal of hydrology (Amsterdam), 233(1-4): 206-222. https://doi.org/10.1016/S0022-1694(00)00234-1
      Chang, Q. X., Ma, R., Sun, Z. Y., et al., 2018. Using Isotopic and Geochemical Tracers to Determine the Contribution of Glacier-Snow Meltwater to Streamflow in a Partly Glacierized Alpine-Gorge Catchment in Northeastern Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): 10, 037-010, 056. https://doi.org/10.1029/2018JD028683
      Chang, Q. X., 2019. Water Sources of Stream Runoff in Alpine Region and Their Seasonal Variations: A Case Study of Hulugou Catchment in the Headwaters of the Heihe River(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Journal of Earth Science, 47(11): 4196-4209(in Chinese with English abstract).
      Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505
      Evans, S. G., Ge, S., Voss, C. I., et al., 2018. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds. Water Resources Research, 54(3): 1599-1615. https://doi.org/10.1002/2017wr022098
      Finger, D., Heinrich, G., Gobiet, A., et al., 2012. Projections of Future Water Resources and Their Uncertainty in a Glacierized Catchment in the Swiss Alps and the Subsequent Effects on Hydropower Production During the 21st Century. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR010733
      Fu, Y. M., Dong, Y. H., Xiang, Z. F., et al., 2020. Advances of DTS-Based Heat Tracer Tests in Tharacterization of Groundwater Flow in Fractured Media. Advances in Science and Technology of Water Resources, 40(03): 86-94(in Chinese with English abstract).
      Ge, M. Y., Ma, R., Sun, Z. Y., et al., 2018. Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River. Earth Science, 43(11): 4246-4255 (in Chinese with English abstract).
      Ge, S., Wu, Q. B., Lu, N., et al., 2008. Groundwater in the Tibet Plateau, Western China. Geophysical Research Letters, 35(18). https://doi.org/10.1029/2008GL034809
      Hu, Y. L., 2019. Impacts of the Groundwater Flow Path on the Patterns of Dissolved Organic Carbon Export in the Cold Alpine Area(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Hu, Y. L., Ma, R., Wang, Y. X., et al., 2019. Using Hydrogeochemical Data to Trace Groundwater Flow Paths in a Cold Alpine Catchment. Hydrological Processes, 33(14): 1942-1960. https://doi.org/10.1002/hyp.13440
      Kalbus, E., Reinstorf, F., Schirmer, M., 2006. Measuring Methods for Groundwater-Surface Water Interactions: AReview. Hydrology and Earth System Sciences, 10(6): 873-887. https://doi.org/10.5194/hess-10-873-2006
      Käser, D., Hunkeler, D. 2016. Contribution of Alluvial Groundwater to the Outflow of Mountainous Catchments. Water Resources Research, 52(2): 680-697. https://doi.org/10.1002/2014WR016730
      Killian, C. D., Asquith, W. H., Barlow, J. R. B., et al., 2019. Characterizing Groundwater and Surface-Water Interaction Using Hydrograph-Separation Techniques and Groundwater-Level Data throughout the Mississippi Delta, USA. Hydrogeology Journal, 27: 2167-2179. https://doi.org/10.1007/s10040-019-01981-6
      Lay, H. L., Thomas, Z., Rouault, F., et al., 2019. Characterization of Diffuse Groundwater Inflows into Streamwater (Part Ⅰ: Spatial and Temporal Mapping Framework Based on Fiber Optic Distributed Temperature Sensing). Water, 11(11): 2389. https://doi.org/10.3390/w11112389
      Lowry, C. S., Walker, J. F., Hunt, R. J., et al., 2007. Identifying Spatial Variability of Groundwater Discharge in a Wetland Stream Using a Distributed Temperature Sensor. Water Resources Research, 43(10). https://doi.org/10.1029/2007WR006145
      Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions Between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033689. https://doi.org/10.1029/2020JD033689
      Schornberg, C., Schmidt, C., Kalbus, E., et al., 2010. Simulating the Effects of Geologic Heterogeneity and Transient Boundary Conditions on Streambed Temperatures-Implications for Temperature-Based Water Flux Calculations. Advances in water resources, 33(11): 1309-1319. https://doi.org/10.1016/j.advwatres.2010.04.007
      Selker, J. S., Thévenaz, L., Huwald, H., et al., 2006. Distributed Fiber-Optic Temperature Sensing for Hydrologic Systems. Water Resources Research, 42(12). https://doi.org/10.1029/2006WR005326
      Unland, N. P., Cartwright, I., Andersen, M. S., et al., 2013. Investigating the Spatio-Temporal Variability in Groundwater and Surface Water Interactions: a Multi-Technique Approach. Hydrology and Earth System Sciences, 17: 3437-3453. https://doi.org/10.5194/hess-17-3437-2013
      Xu, H. X., Xin Z. Y., Wang, X. Z., et al., 2011. Investigation and Study on Insect and the Fauna of Heihe Nature Reserve of Gansu Province. Journal of Gansu Forestry Science and Technology, 36(1): 19-24(in Chinese with English abstract).
      Ye, R. Z., Chang, J., 2019. Study of Groundwater in Permafrost Regions of China: Status and Process. Journal of Glaciology and Geocryology, 41(01): 183-196(in Chinese with English abstract).
      Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2022. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Tibet Plateau. Jornal of Earth Science, 49(3): 1177-1188(in Chinese with English abstract).
      常启昕, 2019. 高寒山区河道径流水分来源及其季节变化规律——以黑河上游葫芦沟流域为例(博士学位论文). 武汉: 中国地质大学.
      常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093
      符韵梅, 董艳辉, 徐志方, 等, 2020. 分布式光纤温度示踪识别裂隙地下水流动研究进展. 水利水电科技进展, 40(03): 86-94.
      葛孟琰, 马瑞, 孙自永, 等, 2018. 高寒山区河水与地下水相互作用的温度示踪: 以黑河上游葫芦沟流域为例. 地球科学, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203
      胡雅璐, 2019. 地下水水流路径对高寒山区溶解性有机碳输出的控制作用研究(博士学位论文). 武汉: 中国地质大学.
      王宗太, 2013. 基于第一次冰川编目的黑河流域冰川分布数据集. 国家青藏高原科学数据中心.
      徐红霞, 辛中尧, 王香枝, 等, 2011. 甘肃黑河自然保护区昆虫调查及区系研究. 甘肃林业科技, 36(01): 19-24.
      叶仁政, 常娟, 2019. 中国冻土地下水研究现状与进展综述. 冰川冻土, 41(01): 183-196.
      赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流溶解性碳输出的特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (191) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return