• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 6
    Jun.  2024
    Turn off MathJax
    Article Contents
    Fan Juan, Hou Enke, Jin Dewu, Liu Yingfeng, Tian Gan, Shi Wenguang, Wang Quanrong, 2024. Analytical Model of Pumping Tests with Depth-Dependent Hydraulic Conductivity in Leakage Aquifer System. Earth Science, 49(6): 2148-2157. doi: 10.3799/dqkx.2023.074
    Citation: Fan Juan, Hou Enke, Jin Dewu, Liu Yingfeng, Tian Gan, Shi Wenguang, Wang Quanrong, 2024. Analytical Model of Pumping Tests with Depth-Dependent Hydraulic Conductivity in Leakage Aquifer System. Earth Science, 49(6): 2148-2157. doi: 10.3799/dqkx.2023.074

    Analytical Model of Pumping Tests with Depth-Dependent Hydraulic Conductivity in Leakage Aquifer System

    doi: 10.3799/dqkx.2023.074
    • Received Date: 2022-11-26
      Available Online: 2024-07-11
    • Publish Date: 2024-06-25
    • The traditional pumping test model typically assumes that the aquifer is a constant, whereas the actual aquifer frequently exhibits depth-dependent hydraulic conductivity due to geological effects and other factors. In this paper, it develops a mathematical model of pumping tests that takes into account leakage, wellbore storage effect, and depth-dependent hydraulic conductivity, and solves the semi-analytical solution, where the depth-dependent hydraulic conductivity represented by an exponential function. The results show that: the greater the attenuation coefficient (A) of depth-dependent hydraulic conductivity, the greater the drawdown in the wellbore and the greater the range of landing funnel caused by pumping. When the hydraulic conductivity decays with depth, the location of the well screen has a significant impact on the pumping test results, the drawdown at the wellbore with the well screen at the upper aquifer location is smaller than the drawdown at the wellbore with the well screen at the lower aquifer location; the estimated hydraulic conductivity is an approximation of the depth-decaying hydraulic conductivity based on drawdown at the wellbore by traditional pumping test model.

       

    • loading
    • Achtziger-Zupančič, P., Loew, S., Mariéthoz, G., 2017. A New Global Database to Improve Predictions of Permeability Distribution in Crystalline Rocks at Site Scale. Journal of Geophysical Research: Solid Earth, 122(5): 3513-3539. https://doi.org/10.1002/2017jb014106
      Cassiani, G., Kabala, Z. J., Medina, M. A., 1999. Flowing Partially Penetrating Well: Solution to a Mixed-Type Boundary Value Problem. Advances in Water Resources, 23(1): 59-68. https://doi.org/10.1016/s0309-1708(99)00002-0
      Chen, C., Wen, Z., Zhou, H., et al., 2020. New Semi-Analytical Model for an Exponentially Decaying Pumping Rate with a Finite-Thickness Skin in a Leaky Aquifer. Journal of Hydrologic Engineering, 25(8). https://doi.org/10.1061/(asce)he.1943-5584.0001956
      Chen, C. X., 2020. Improvement of Dupuit Model: With Infiltration Recharge. Hydrogeology & Engineering Geology, 47(5): 1-4(in Chinese with English abstract).
      Chen, C. X., Tang, Z. H., 2021. Improvement of the Theis Unsteady Well Flow Model with Infiltration Recharge in a Phreatic Aquifer. Hydrogeology & Engineering Geology, 48(6): 1-12(in Chinese with English abstract).
      Chen, Y. F., Ling, X. M., Liu, M. M., et al., 2018. Statistical Distribution of Hydraulic Conductivity of Rocks in Deep-Incised Valleys, Southwest China. Journal of Hydrology, 566: 216-226. https://doi.org/10.1016/j.jhydrol.2018.09.016
      Hantush, M. S., 1964. Advances in Hydroscience. Elsevier, Amsterdam, 281-432. https://doi.org/10.1016/b978-1-4831-9932-0.50010-3
      Hantush, M. S., 1960. Modification of the Theory of Leaky Aquifers. Journal of Geophysical Research, 65(11): 3713-3725. https://doi.org/10.1029/jz065i011p03713
      Kabala, Z. J., Cassiani, G., 1997. Well Hydraulics with the Weber-Goldstein Transforms. Transport in Porous Media, 29(2): 225-246. https://doi.org/10.1023/A:1006542203102
      Lai, R. Y. S., Su, C. W., 1974. Nonsteady Flow to a Large Well in a Leaky Aquifer. Journal of Hydrology, 22(3-4): 333-345. https://doi.org/10.1016/0022-1694(74)90085-7
      Lin, Y. C., Yang, S. Y., Fen, C. S., et al., 2016. A General Analytical Model for Pumping Tests in Radial Finite Two-Zone Confined Aquifers with Robin-Type Outer Boundary. Journal of Hydrology, 540: 1162-1175. https://doi.org/10.1016/j.jhydrol.2016.07.028
      Louis, C., 1972. Rock Hydraulics. In: Müller, L., ed., Rock Mechanics. International Centre for Mechanical Sciences. Springer, Vienna.
      Luo, Y., Liu, P., Chen, W. X., et al., 2023. Pumping Test to Interpret Karst Aquifer Types and Hydrogeological Parameters. Journal of China Hydrology, 43(5): 39-44(in Chinese with English abstract).
      Mathias, S. A., Todman, L. C., 2010. Step-Drawdown Tests and the Forchheimer Equation. Water Resources Research, 46(7): W07514. https://doi.org/10.1029/2009wr008635
      Novakowski, K. S., 1989. A Composite Analytical Model for Analysis of Pumping Tests Affected by Well Bore Storage and Finite Thickness Skin. Water Resources Research, 25(9): 1937-1946. https://doi.org/10.1029/wr025i009p01937
      Papadopulos, I. S., Cooper, H. H. Jr., 1967. Drawdown in a Well of Large Diameter. Water Resources Research, 3(1): 241-244. https://doi.org/10.1029/wr003i001p00241
      Saar, M. O., Manga, M., 2004. Depth Dependence of Permeability in the Oregon Cascades Inferred from Hydrogeologic, Thermal, Seismic, and Magmatic Modeling Constraints. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2003jb002855
      Sakata, Y., Ikeda, R., 2013. Depth Dependence and Exponential Models of Permeability in Alluvial-Fan Gravel Deposits. Hydrogeology Journal, 21(4): 773-786. https://doi.org/10.1007/s10040-013-0961-8
      Theis, C. V., 1935. The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-Water Storage. Transactions, American Geophysical Union, 16(2): 519-524. https://doi.org/10.1029/tr016i002p00519
      Tsai, C. S., Yeh, H. D., 2012. Wellbore Flow-Rate Solution for a Constant-Head Test in Two-Zone Finite Confined Aquifers. Hydrological Processes, 26(21): 3216-3224. https://doi.org/10.1002/hyp.8322
      Wan, L., Jiang, X. W., Wang, X. S., 2010. A Common Regularity of Aquifers: The Decay in Hydraulic Conductivity with Depth. Geological Journal of China Universities, 16(1): 7-12(in Chinese with English abstract).
      Wang, Q. R., Shi, W. G., Zhan, H. B., et al., 2018. Models of Single-Well Push-Pull Test with Mixing Effect in the Wellbore. Water Resources Research, 54(12): 10155-10171. https://doi.org/10.1029/2018wr023317
      Wang, Q. R., Zhan, H. B., 2015. On Different Numerical Inverse Laplace Methods for Solute Transport Problems. Advances in Water Resources, 75: 80-92. https://doi.org/10.1016/j.advwatres.2014.11.001
      Wei, S. Y., Wan, J. W., Sun, W., et al., 2022. Identification of Hydrogeological Parameter in Double-Porosity Fractured Aquifer Based on Single-Well Pumping Test. Earth Science(in press)(in Chinese with English abstract).
      Wang, X. S., Jiang, X. W., Wan, L., et al., 2009. Evaluation of Depth-Dependent Porosity and Bulk Modulus of a Shear Using Permeability-Depth Trends. International Journal of Rock Mechanics and Mining Sciences, 46(7): 1175-1181. https://doi.org/10.1016/j.ijrmms.2009.02.002
      Wang, Y. L., Zhan, H. B., Huang, K., et al., 2021. Identification of Non-Darcian Flow Effect in Double-Porosity Fractured Aquifer Based on Multi-Well Pumping Test. Journal of Hydrology, 600: 126541. https://doi.org/10.1016/j.jhydrol.2021.126541
      Wen, Z., Huang, G. H., Zhan, H. B., 2011. Non-Darcian Flow to a Well in a Leaky Aquifer Using the Forchheimer Equation. Hydrogeology Journal, 19(3): 563-572. https://doi.org/10.1007/s10040-011-0709-2
      Wen, Z., Huang, G. H., Zhan, H. B., et al., 2008. Two-Region Non-Darcian Flow Toward a Well in a Confined Aquifer. Advances in Water Resources, 31(5): 818-827. https://doi.org/10.1016/j.advwatres.2008.01.014
      Wen, Z., Huang, G. H., Liu, Z. T., et al., 2011. An Approximate Analytical Solution for Two-Region Non-Darcian Flow Toward a Well in a Leaky Aquifer. Earth Science, 36(6): 1165-1172(in Chinese with English abstract).
      Yang, S. Y., Yeh, H. D., Chiu, P. Y., 2006. A Closed Form Solution for Constant Flux Pumping in a Well under Partial Penetration Condition. Water Resources Research, 42(5). https://doi.org/10.1029/2004wr003889
      Yang, S. Y., Yeh, H. D., 2005. Laplace-Domain Solutions for Radial Two-Zone Flow Equations under the Conditions of Constant-Head and Partially Penetrating Well. Journal of Hydraulic Engineering, 131(3): 209-216. https://doi.org/10.1061/(asce)0733-9429(2005)131:3(209)
      Zhang, L., Franklin, J. A., 1993. Prediction of Water Flow into Rock Tunnels: an Analytical Solution Assuming an Hydraulic Conductivity Gradient. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(1): 37-46. https://doi.org/10.1016/0148-9062(93)90174-c
      Zheng, G., Ha, D., Loaiciga, H., et al., 2019. Estimation of the Hydraulic Parameters of Leaky Aquifers Based on Pumping Tests and Coupled Simulation/Optimization: Verification Using a Layered Aquifer in Tianjin, China. Hydrogeology Journal, 27(8): 3081-3095. https://doi.org/10.1007/s10040-019-02021-z
      Zhuang, C., Li, Y. B., Zhou, Z. F., et al., 2022. Effects of Exponentially Decaying Aquitard Hydraulic Conductivity on Well Hydraulics and Fractions of Groundwater Withdrawal in a Leaky Aquifer System. Journal of Hydrology, 607: 127439. https://doi.org/10.1016/j.jhydrol.2022.127439
      Zhou, Z. F., 2018. Application of the Monoexponential Decay Function on Analyzing Water-Inflow in Underground Boreholes. Journal of Mining & Safety Engineering, 35(3): 642-648(in Chinese with English abstract).
      陈崇希, 2020. Dupuit模型的改进: 具入渗补给. 水文地质工程地质, 47(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106001.htm
      陈崇希, 唐仲华, 2021. Theis不稳定潜水井流模型的改进: 具入渗补给. 水文地质工程地质, 48(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106001.htm
      罗颖, 刘埔, 陈维孝, 等, 2023. 抽水试验解译岩溶含水层类型及水文地质参数. 水文, 43(5): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202305007.htm
      万力, 蒋小伟, 王旭升, 2010. 含水层的一种普遍规律: 渗透系数随深度衰减. 高校地质学报, 16(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201001003.htm
      文章, 黄冠华, 刘壮添, 等, 2011. 越流含水层中抽水井附近非达西流两区模型近似解析解. 地球科学, 36(6): 1165-1172. doi: 10.3799/dqkx.2011.123
      魏世毅, 万军伟, 孙伟, 等, 2022. 考虑井储效应的双重介质单孔抽水非稳定流解析模型. 地球科学(待刊).
      周振方, 2018. 单指数模型在分析井下钻孔疏水规律中的应用. 采矿与安全工程学报, 35(3): 642-648. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201803028.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (340) PDF downloads(29) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return