Citation: | Xue Weiguang, Deng Yamin, Xue Jiangkai, Du Yao, Xu Yuxiao, Fan Ruiyu, 2024. Controlling Mechanism of Paleoclimate Change on Iodine Enrichment in Alluvial Aquifers of Middle Reach of Yangtze River since Late Pleistocene. Earth Science, 49(10): 3749-3760. doi: 10.3799/dqkx.2023.076 |
Amini Tabrizi, R., Dontsova, K., Graf Grachet, N., et al., 2022. Elevated Temperatures Drive Abiotic and Biotic Degradation of Organic Matter in a Peat Bog under Oxic Conditions. The Science of the Total Environment, 804: 150045. https://doi.org/10.1016/j.scitotenv.2021.150045
|
Andersen, S., Guan, H. X., Teng, W. P., et al., 2009. Speciation of Iodine in High Iodine Groundwater in China Associated with Goitre and Hypothyroidism. Biological Trace Element Research, 128(2): 95-103. https://doi.org/10.1007/s12011-008-8257-x
|
Bouchez, J., Gaillardet, J., France-Lanord, C., et al., 2011. Grain Size Control of River Suspended Sediment Geochemistry: Clues from Amazon River Depth Profiles. Geochemistry, Geophysics, Geosystems, 12(3): Q03008. https://doi.org/10.1029/2010GC003380
|
Boulter, C. A., Hopkinson, L. J., Ineson, M. G., et al., 2004. Provenance and Geochemistry of Sedimentary Components in the Volcano-Sedimentary Complex, Iberian Pyrite Belt: Discrimination between the Sill-Sediment-Complex and Volcanic-Pile Models. Journal of the Geological Society, 161(1): 103-115. https://doi.org/10.1144/0016-764902-159
|
Dal Maso, L., Bosetti, C., La Vecchia, C., et al., 2009. Risk Factors for Thyroid Cancer: An Epidemiological Review Focused on Nutritional Factors. Cancer Causes & Control, 20(1): 75-86. https://doi.org/10.1007/s10552-008-9219-5
|
Donselaar, M. E., Bhatt, A. G., Ghosh, A. K., et al., 2017. On the Relation between Fluvio-Deltaic Flood Basin Geomorphology and the Wide-Spread Occurrence of Arsenic Pollution in Shallow Aquifers. The Science of the Total Environment, 574: 901-913. https://doi.org/10.1016/j.scitotenv.2016.09.074
|
Du, Y., Deng, Y. M., Ma, T., et al., 2018. Hydrogeochemical Evidences for Targeting Sources of Safe Groundwater Supply in Arsenic-Affected Multi-Level Aquifer Systems. Science of the Total Environment, 645: 1159-1171. https://doi.org/10.1016/j.scitotenv.2018.07.173
|
Eusterhues, K., Rennert, T., Knicker, H., et al., 2011. Fractionation of Organic Matter Due to Reaction with Ferrihydrite: Coprecipitation versus Adsorption. Environmental Science & Technology, 45(2): 527-533. https://doi.org/10.1021/es1023898
|
Eusterhues, K., Wagner, F. E., Häusler, W., et al., 2008. Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-Ray Diffraction and Mössbauer Spectroscopy. Environmental Science & Technology, 42(21): 7891-7897. https://doi.org/10.1021/es800881w
|
Gabet, E. J., Edelman, R., Langner, H., 2006. Hydrological Controls on Chemical Weathering Rates at the Soil-Bedrock Interface. Geology, 34(12): 1065. https://doi.org/10.1130/g23085a.1
|
Gao, J., Zheng, T. L., Deng, Y. M., et al., 2021. Microbially Mediated Mobilization of Arsenic from Aquifer Sediments under Bacterial Sulfate Reduction. The Science of the Total Environment, 768: 144709. https://doi.org/10.1016/j.scitotenv.2020.144709
|
Henjum, S., Barikmo, I., Gjerlaug, A. K., et al., 2010. Endemic Goitre and Excessive Iodine in Urine and Drinking Water among Saharawi Refugee Children. Public Health Nutrition, 13(9): 1472-1477. https://doi.org/10.1017/S1368980010000650
|
Holmkvist, L., Ferdelman, T. G., Jørgensen, B. B., 2011. A Cryptic Sulfur Cycle Driven by Iron in the Methane Zone of Marine Sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta, 75(12): 3581-3599. https://doi.org/10.1016/j.gca.2011.03.033
|
Hu, Q., Moran, J. E., Blackwood, V., 2009. Geochemical Cycling of Iodine Species in Soils. The Comprehensive Handbook on Iodine, Geochemical Cycling of Iodine Species in Soils, Academic Press, New York, 95-107.
|
Jansson, J. K., Hofmockel, K. S., 2020. Soil Microbiomes and Climate Change. Nature Reviews Microbiology, 18: 35-46. https://doi.org/10.1038/s41579-019-0265-7
|
Ji, J. F., Balsam, W., Chen, J., 2001. Mineralogic and Climatic Interpretations of the Luochuan Loess Section (China) Based on Diffuse Reflectance Spectrophotometry. Quaternary Research, 56(1): 23-30. https://doi.org/10.1006/qres.2001.2238
|
Jin, G., Deng, Y. M., Du, Y., et al., 2022. Spatial-Temporal Distribution of Arsenic in Groundwater System in Tian-E-Zhou Wetland of the Yangtze River and Its Controlling Mechanism. Earth Science, 47(11): 4161-4175(in Chinese with English abstract).
|
Kaplan, D. I., Denham, M. E., Zhang, S., et al., 2014. Radioiodine Biogeochemistry and Prevalence in Groundwater. Critical Reviews in Environmental Science and Technology, 44(20): 2287-2335. https://doi.org/10.1080/10643389.2013.828273
|
Kellerman, A. M., Guillemette, F., Podgorski, D. C., et al., 2018. Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems. Environmental Science & Technology, 52(5): 2538-2548. https://doi.org/10.1021/acs.est.7b05513
|
Lewan, M. D., Maynard, J. B., 1982. Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary Rocks. Geochimica et Cosmochimica Acta, 46(12): 2547-2560. https://doi.org/10.1016/0016-7037(82)90377-5
|
Li, G. X., Li, P., Liu, Y., et al., 2014. Sedimentary System Response to the Global Sea Level Change in the East China Seas since the Last Glacial Maximum. Earth-Science Reviews, 139: 390-405. https://doi.org/10.1016/j.earscirev.2014.09.007
|
Li, J. X., Wang, Y. T., Xue, X. B., et al., 2020. Mechanistic Insights into Iodine Enrichment in Groundwater during the Transformation of Iron Minerals in Aquifer Sediments. The Science of the Total Environment, 745: 140922. https://doi.org/10.1016/j.scitotenv.2020.140922
|
Li, J. X., Wang, Y. X., Xie, X. J., 2016. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and Its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China. The Science of the Total Environment, 544: 158-167. https://doi.org/10.1016/j.scitotenv.2015.08.144
|
Li, J. X., Zhou, H. L., Qian, K., et al., 2017. Fluoride and Iodine Enrichment in Groundwater of North China Plain: Evidences from Speciation Analysis and Geochemical Modeling. The Science of the Total Environment, 598: 239-248. https://doi.org/10.1016/j.scitotenv.2017.04.158
|
Long, X. Y., Ji, J. F., Barrón, V., et al., 2016. Climatic Thresholds for Pedogenic Iron Oxides under Aerobic Conditions: Processes and Their Significance in Paleoclimate Reconstruction. Quaternary Science Reviews, 150: 264-277. https://doi.org/10.1016/j.quascirev.2016.08.031
|
Luo, Y. P., Deng, Y. M., Du, Y., et al., 2022. Occurrence and Formation of High Iodine Groundwater in oxbows of the Middle Reach of the Yangtze River. Earth Science, 47(2): 662-673(in Chinese with English abstract).
|
März, C., Poulton, S. W., Brumsack, H. J., et al., 2012. Climate-Controlled Variability of Iron Deposition in the Central Arctic Ocean (Southern Mendeleev Ridge) over the Last 130 000 Years. Chemical Geology, 330/331: 116-126. https://doi.org/10.1016/j.chemgeo.2012.08.015
|
McDonough, L. K., O'Carroll, D. M., Meredith, K., et al., 2020. Changes in Groundwater Dissolved Organic Matter Character in a Coastal Sand Aquifer Due to Rainfall Recharge. Water Research, 169: 115201. https://doi.org/10.1016/j.watres.2019.115201
|
McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222
|
Mikutta, R., Lorenz, D., Guggenberger, G., et al., 2014. Properties and Reactivity of Fe-Organic Matter Associations Formed by Coprecipitation versus Adsorption: Clues from Arsenate Batch Adsorption. Geochimica et Cosmochimica Acta, 144: 258-276. https://doi.org/10.1016/j.gca.2014.08.026
|
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0
|
Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
|
Pan, H. W., Yu, H. B., Song, Y. H., et al., 2017. Tracking Fluorescent Components of Dissolved Organic Matter from Soils in Large-Scale Irrigated Area. Environmental Science and Pollution Research, 24(7): 6563-6571. https://doi.org/10.1007/s11356-017-8378-x
|
Peng, Y., Wu, J., Chao, J. B., et al., 2017. A Method for the the Accurate Determination of 14 Metal Elements in Soils/Sediments by ICP-MS. Environmental Chemistry, 36(1): 175-182 (in Chinese with English abstract). doi: 10.1002/etc.3522
|
Poulton, S. W., Canfield, D. E., 2005. Development of a Sequential Extraction Procedure for Iron: Implications for Iron Partitioning in Continentally Derived Particulates. Chemical Geology, 214(3/4): 209-221. https://doi.org/10.1016/j.chemgeo.2004.09.003
|
Selim Reza, A. H. M., Jean, J. S., Yang, H. J., et al., 2010. Occurrence of Arsenic in Core Sediments and Groundwater in the Chapai-Nawabganj District, NorthWestern Bangladesh. Water Research, 44(6): 2021-2037. https://doi.org/10.1016/j.watres.2009.12.006
|
Shen, S., Luo, K. W., Ma, T., et al., 2022. Nitrogen Burial Characteristics of Quaternary Sediments and Its Controls on High Ammonium Groundwater in the Central Yangtze River Basin. The Science of the Total Environment, 842: 156659. https://doi.org/10.1016/j.scitotenv.2022.156659
|
Sun, D. J., Gao, Y. H., Liu, H., 2019. Achievements and Prospects of Endemic Disease Prevention and Control in China in Past 70 Years. Chinese Journal of Public Health, 35(7): 793-796(in Chinese with English abstract).
|
Wang, Y. X., Li, J. X., Ma, T., et al., 2021. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology, 51(24): 2895-2933. https://doi.org/10.1080/10643389.2020.1807452
|
Wei, G. J., Li, X. H., Liu, Y., et al., 2006. Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 21(4): PA4214. https://doi.org/10.1029/2006PA001300
|
Xie, X. J., Wang, Y. X., Ellis, A., et al., 2014. Impact of Sedimentary Provenance and Weathering on Arsenic Distribution in Aquifers of the Datong Basin, China: Constraints from Elemental Geochemistry. Journal of Hydrology, 519: 3541-3549. https://doi.org/10.1016/j.jhydrol.2014.10.044
|
Xu, C., Kaplan, D. I., Zhang, S. J., et al., 2015. Radioiodine Sorption/Desorption and Speciation Transformation by Subsurface Sediments from the Hanford Site. Journal of Environmental Radioactivity, 139: 43-55. https://doi.org/10.1016/j.jenvrad.2014.09.012
|
Xue, J. K., Deng, Y. M., Du, Y., et al., 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along Middle Reach of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 46(11): 4140-4149(in Chinese with English abstract).
|
Xue, J. K., Deng, Y. M., Luo, Y. P., et al., 2022. Unraveling the Impact of Iron Oxides-Organic Matter Complexes on Iodine Mobilization in Alluvial-Lacustrine Aquifers from Central Yangtze River Basin. The Science of the Total Environment, 814: 151930. https://doi.org/10.1016/j.scitotenv.2021.151930
|
Xue, X. B., Li, J. X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921(in Chinese with English abstract).
|
Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Impacts of Sediment Compaction on Iodine Enrichment in Deep Aquifers of the North China Plain. Water Research, 159: 480-489. https://doi.org/10.1016/j.watres.2019.05.036
|
Zhang, J. W., Liang, X., Jin, M. G., et al., 2022. Evolution of the Groundwater Flow System Driven by the Sedimentary Environment since the Last Glacial Maximum in the Central Yangtze River Basin. Journal of Hydrology, 610: 127997. https://doi.org/10.1016/j.jhydrol.2022.127997
|
Zhang, Y., Yu, Q., Shi, C. W., et al., 2023. Environmental Isotopes and Cl/Br Ratios Evidences for Delineating Arsenic Mobilization in Aquifer System of the Jianghan Plain, Central China. Journal of Earth Science, 34(2): 571-579. https://doi.org/10.1007/s12583-020-1096-1
|
Zhao, Q., Gan, Y. Q., Deng, Y. M., et al., 2022. Identifying Carbon Processing Based on Molecular Differences between Groundwater and Water-Extractable Aquifer Sediment Dissolved Organic Matter in a Quaternary Alluvial-Lacustrine Aquifer. Applied Geochemistry, 137: 105199. https://doi.org/10.1016/j.apgeochem.2022.105199
|
金戈, 邓娅敏, 杜尧, 等, 2022. 天鹅洲长江故道湿地地下水砷的时空分布特征及控制机理. 地球科学, 47(11): 4161-4175. doi: 10.3799/dqkx.2022.344
|
罗义鹏, 邓娅敏, 杜尧, 等, 2022. 长江中游故道区高碘地下水分布与形成机理. 地球科学, 47(2): 662-673. doi: 10.3799/dqkx.2021.031
|
彭杨, 吴婧, 巢静波, 等, 2017. 土壤/沉积物中14种金属元素的ICP-MS准确测定方法. 环境化学, 36(1): 175-182.
|
孙殿军, 高彦辉, 刘辉, 2019. 中国70年地方病防治成效及展望. 中国公共卫生, 35(7): 793-796.
|
薛江凯, 邓娅敏, 杜尧, 等, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 46(11): 4140-4149. doi: 10.3799/dqkx.2020.398
|
薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
|