• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 6
    Jun.  2023
    Turn off MathJax
    Article Contents
    Liu Jianzhang, Chen Cheng, Cai Zhongxian, Li Jie, Wu Zhengzhou, 2023. Division of Calcite Veins Stage, Paleo-Fluid Evolution and Hydrocarbon Charging History in the Middle and Lower Cambrin Strike-Slip Fault Zone in Keping Area, Northwest of Tarim Basin. Earth Science, 48(6): 2189-2203. doi: 10.3799/dqkx.2023.089
    Citation: Liu Jianzhang, Chen Cheng, Cai Zhongxian, Li Jie, Wu Zhengzhou, 2023. Division of Calcite Veins Stage, Paleo-Fluid Evolution and Hydrocarbon Charging History in the Middle and Lower Cambrin Strike-Slip Fault Zone in Keping Area, Northwest of Tarim Basin. Earth Science, 48(6): 2189-2203. doi: 10.3799/dqkx.2023.089

    Division of Calcite Veins Stage, Paleo-Fluid Evolution and Hydrocarbon Charging History in the Middle and Lower Cambrin Strike-Slip Fault Zone in Keping Area, Northwest of Tarim Basin

    doi: 10.3799/dqkx.2023.089
    • Received Date: 2022-10-26
    • Publish Date: 2023-06-25
    • Multi-stage calcite veins and solid bitumen filled in the Middle and Lower Cambrian strike-slip fault zone of the field outcrops for Keping Area, northwest of Tarim basin, are important medium to reveal the fluid activity history and hydrocarbon accumulation process. Based on the observation of the filling and distribution characteristics of calcite veins and bitumen in outcrop of strike-slip fault zones, the paragenetic sequence of calcite veins and bitumen and the origin fluid properties were determined using the thin section observation, cathodoluminescence, in-situ trace and rare earth element testing, carbon and oxygen isotopes measurement, system analysis of fluid inclusion, and the evolution of paleo-fluid in the strike-slip fault zones of the Middle and Lower Cambrian and its coupling relationship with hydrocarbon charging process were investigated. The results show that there are at least five phases of calcite veins in the strike-slip fault zones of the Middle and Lower Cambrian for Keping area of Xinjiang, C1, C2, C3, C4 and C5 respectively. The C1 calcite vein-forming fluid was mainly derived from formation water of the local layer and partly mixed with the brine of the Awatage Formation that infiltrated along the strike-slip fault. The C2 and C3 calcite vein-forming fluids were mainly the mixture of formation water and hydrocarbon-bearing hydrothermal fluids, but the formation temperature of C3 was slightly lower. The C4 calcite vein-forming fluid was mainly formation water, and there was mixing of atmospheric fresh water. The C5 calcite vein-forming fluid was mainly the mixture of formation water, hydrocarbon-bearing hydrothermal fluid and atmospheric fresh water. The formation stages of C1, C2, C3, C4 and C5 calcite veins were associated with tectonic activities of Keping area and generated in the Middle and Late Caledonian periods, Middle and Late Hercynian periods, Indosinian to Middle Yanshanian periods, Late Yanshanian and Himalayan periods, respectively. Three hydrocarbon charging phases were recognized, the Middle and Late Hercynian periods, Indosinian to Middle Yanshanian period and Himalayan period, respectively. The Middle and Late Hercynian periods and the Middle Inindo-Yanshanian period may be the main formation period of the primary oil and gas reservoirs for the Middle and Lower Cambrian in the Keping area, and the Himalayan period was an important period of oil and gas reservoir adjustment and hydrocarbon reaccumulation. The traps formed in Himalayan period and related to strike-slip faults also have favorable conditions for petroleum accumulation.

       

    • loading
    • Aubert, D., Stille, P., Probst, A., et al. 00., 2002. Characterization and Migration of Atmospheric REE in Soils and Surface Waters. Geochimica et Cosmochimica Acta, 66(19): 3339-3350. https://doi.org/10.1016/s0016-7037(02)00913-4
      Beinlich, A., John, T., Vrijmoed, J. C., et al., 2020. Instantaneous Rock Transformations in the Deep Crust Driven by Reactive Fluid Flow. Nature Geoscience, 13(4): 307-311. https://doi.org/10.1038/s41561-020-0554-9
      Bolhar, R., Kamber, B. S., Moorbath, S., et al., 2004. Characterisation of Early Archaean Chemical Sediments by Trace Element Signatures. Earth and Planetary Science Letters, 222(1): 43-60. https://doi.org/10.1016/j.epsl.2004.02.016
      Cai, C. F., Franks, S. G., Aagaard, P., 2001. Origin and Migration of Brines from Paleozoic Strata in Central Tarim, China: Constraints from 87Sr/86Sr, δD, δ18O and Water Chemistry. Applied Geochemistry, 16(9-10): 1269-1284. https://doi.org/10.1016/s0883-2927(01)00006-3
      Cai, C. F., Li, K. K., Li, B., et al., 2009. Geochemical Characteristics and Origins of Fracture- and Vug-Fillings of the Ordovidan in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 25(10): 2399-2404(in Chinese with English abstract).
      Chang, J., Qiu, N. S., Zuo, Y. H., et al., 2011. The New Evidence on Tectonic Uplift in Kepingtage Area, Tarim, China: Constraints from (U-Th)/He Ages. Chinese Journal of Geophysics, 54(1): 163-172 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.01.017
      Chen, H. H., Wu, Y., Feng, Y., et al., 2014. Timing and Chronology of Hydrocarbon Charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China. Oil & Gas Geology, 35(6): 806-819(in Chinese with English abstract).
      Emrich, K., Ehhalt, D. H., Vogel, J. C., 1970. Carbon Isotope Fractionation during the Precipitation of Calcium Carbonate. Earth and Planetary Science Letters, 8(5): 363-371. https://doi.org/10.1016/0012-821x(70)90109-3
      Friedman, I., O'Neil, J. R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In: Michael, F., ed., Data of Geochemistry. U. S. Department of the Interior, Bibliogov, U. S. A. .
      Goldstein, R. H., 2003. Petrographic Analysis of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Ottawa, 9-53.
      He, W. Y., Li, J. H., Qian, X. L., et al., 2002. Analysis of Fault Structures in the Kalpin Fault Uplift, Tarim Basin. Chinese Geology, 29(1): 37-43 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2002.01.007
      He, Z. L., Zhang, J. T., Ding, Q., et al., 2017. Factors Controlling the Formation of High-Quality Deep to Ultra-Deep Carbonate Reservoirs. Oil & Gas Geology, 38(4): 633-644, 763 (in Chinese with English abstract).
      Huang, S. J., Qing, H. R., Hu, Z. W., et al., 2008. Cathodoluminescence and Diagenesis of the Carbonate Rocks in Feixianguan Formation of Triassic, Eastern Sichuan Basin of China. Earth Science, 33(1): 26-34 (in Chinese with English abstract).
      Jin, Z. J., Zhu, D. Y., Meng, Q. Q., et al., 2013. Hydrothermal Activites and Influences on Migration of Oil and Gas in Tarim Basin. Acta Petrologica Sinica, 29(3): 1048-1058(in Chinese with English abstract).
      Kawabe, I., Toriumi, T., Ohta, A., et al., 1998. Monoisotopic REE Abundances in Seawater and the Origin of Seawater Tetrad Effect. Geochemical Journal, 32(4): 213-229. https://doi.org/10.2343/geochemj.32.213
      Kim, S. T., Coplen, T. B., Horita, J., 2015. Normalization of Stable Isotope Data for Carbonate Minerals: Implementation of IUPAC Guidelines. Geochimica et Cosmochimica Acta, 158: 276-289. https://doi.org/10.1016/j.gca.2015.02.011
      Liu, B. Z., 2020. Analysis of Main Controlling Factors of Oil and Gas Differential Accumulation in Shunbei Area, Tarim Basin—Taking Shunbei No. 1 and No. 5 Strike Slip Fault Zones as Examples. China Petroleum Exploration, 25(3): 83-95 (in Chinese with English abstract).
      Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Lottermoser, B. G., 1992. Rare Earth Elements and Hydrothermal Ore Formation Processes. Ore Geology Reviews, 7(1): 25-41. https://doi.org/10.1016/0169-1368(92)90017-f
      Lu, H. F., Jia, D., Cai, D. S., et al., 1998. On the Kalpin Transpression Tectonics of Northwest Tarim. Geological Journal of China Universities, 4(1): 49-58(in Chinese with English abstract).
      Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17 (in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
      Ma, Y. S., Li, M. W., Cai, X. Y., et al., 2020. Mechanisms and Exploitation of Deep Marine Petroleum Accumulations in China: Advances, Technological Bottlenecks and Basic Scientific Problems. Oil & Gas Geology, 41(4): 655-672, 683 (in Chinese with English abstract).
      Qi, L. X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2016.03.004
      Qi, Y. M., Li, Y. J., Wang, Y. R., et al., 2012. Fault Analysis on Shajingzi Structural Belt, NW Margin of Tarim Basin, NW China. Chinese Journal of Geology, 47(2): 265-277 (in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2012.02.001
      Qiu, N. S., Chang, J. A., Zuo, Y. H., et al., 2012. Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 96(5): 789-821. https://doi.org/10.1306/09071111029
      Sorkhabi, R., 2005. Geochemical Signatures of Fluid Flow in Thrust Sheets: Fluid-Inclusion and Stable Isotope Studies of Calcite Veins in Western Wyoming. AAPG, 85: 251-267.
      Veizer, J., Bruckschen, P., Pawellek, F., et al., 1997. Oxygen Isotope Evolution of Phanerozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 159-172. https://doi.org/10.1016/s0031-0182(97)00052-7 doi: 10.1016/S0031-0182(97)00052-7
      Wang, B., Yang, Y., Cao, Z. C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216 (in Chinese with English abstract).
      Wang, X. P., Yan, J. J., 1995. Structural Framework of Major Faults in Northern Tarim Basin, Xinjiang. Earth Science, 20(3): 237-242 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.1995.03.001
      Wu, G. Y., Li, Y. J., Liu, Y. L., et al., 2013. Paleozoic Sedimento-Tectonic Evolution and Basin Dynamic Settings in Wushi-Kalpin-Bachu Area, Northwest Tarim. Journal of Palaeogeography, 15(2): 203-218 (in Chinese with English Abstract).
      Xi, Q., Yu, H. Z., Gu, Q. Y., et al., 2016. Main Hydrocarbon Source Rocks and Contrasts for Awati Sag in Tarim Basin. Petroleum Geology & Oilfield Development in Daqing, 35(1): 12-18 (in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2016.01.003
      Xu, H., Guo, X. W., Cao, Z. C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548 (in Chinese with English abstract).
      Yang, P., Wu, G. H., Nuriel, P., et al., 2021. In Situ LA-ICPMS U-Pb Dating and Geochemical Characterization of Fault-Zone Calcite in the Central Tarim Basin, Northwest China: Implications for Fluid Circulation and Fault Reactivation. Chemical Geology, 568: 120125. https://doi.org/10.1016/j.chemgeo.2021.120125
      Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Its Significance of Ultra-Deep Oil and Gas Exploration in Well Luntan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72 (in Chinese with English abstract) 7.
      Zhang, C., Zheng, D. M., Li, J. H., 2001. Attribute of Paleozoic Structures and Its Evolution Characteristics in Keping Fault-Uplift. Oil & Gas Geology, 22(4): 314-318 (in Chinese with English abstract).
      Zhang, J. F., Zhang, Y. Y., Gao, Y. J., 2022. Silurian Hydrocarbon Exploration Breakthrough and Its Implications in the Shajingzi Structural Belt of Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 203-214 (in Chinese with English abstract).
      Zhang, Z. Y., Liu, D. D., Zhu, B., et al., 2013. The Kinematic Features and Regional Geological Significances of the Late Cenozoic Ingan Fault, Northwestern Tarim Basin. Geotectonica et Metallogenia, 37(2): 184-193 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2013.02.002
      Zhu, G. Y., Cao, Y. H., Yan, L., et al., 2018. Petroleum Exploration Potential and Favorable Areas of Ultra-Deep Marine Strata Deeper Than 8 000 Meters in Tarim Basin. Natural Gas Geoscience, 29(6): 755-772 (in Chinese with English abstract).
      Zhu, G. Y., Chen, F. R., Chen, Z. Y., et al., 2016. Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21 (in Chinese with English abstract).
      蔡春芳, 李开开, 李斌, 等, 2009. 塔河地区奥陶系碳酸盐岩缝洞充填物的地球化学特征及其形成流体分析. 岩石学报, 25(10): 2399-2404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910009.htm
      常健, 邱楠生, 左银辉, 等, 2011. 塔里木柯坪塔格地区构造抬升的新证据: 来自(U-Th)/He年龄的约束. 地球物理学报, 54(1): 163-172. doi: 10.3969/j.issn.0001-5733.2011.01.017
      陈红汉, 吴悠, 丰勇, 等, 2014. 塔河油田奥陶系油气成藏期次及年代学. 石油与天然气地质, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm
      何文渊, 李江海, 钱祥麟, 等, 2002. 塔里木盆地柯坪断隆断裂构造分析. 中国地质, 29(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200201006.htm
      何治亮, 张军涛, 丁茜, 等, 2017. 深层-超深层优质碳酸盐岩储层形成控制因素. 石油与天然气地质, 38(4): 633-644, 763. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704001.htm
      黄思静, 卿海若, 胡作维, 等, 2008. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用. 地球科学, 33(1): 26-34. doi: 10.3321/j.issn:1000-2383.2008.01.004
      金之钧, 朱东亚, 孟庆强, 等, 2013. 塔里木盆地热液流体活动及其对油气运移的影响. 岩石学报, 29(3): 1048-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm
      刘宝增, 2020. 塔里木盆地顺北地区油气差异聚集主控因素分析: 以顺北1号、顺北5号走滑断裂带为例. 中国石油勘探, 25(3): 83-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003008.htm
      卢华复, 贾东, 蔡东升, 等, 1998. 塔西北柯坪剪切挤压构造. 高校地质学报, 4(1)49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX801.005.htm
      马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
      马永生, 黎茂稳, 蔡勋育, 等, 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655-672, 683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm
      漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm
      齐英敏, 李曰俊, 王月然, 等, 2012. 塔里木盆地西北缘沙井子构造带断裂构造分析. 地质科学, 47(2): 265-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201202002.htm
      王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9): 3203-3216. doi: 10.3799/dqkx.2020.352
      王燮培, 严俊君, 1995. 塔里木盆地北部断裂格架分析. 地球科学, 20(3): 237-242. http://www.earth-science.net/article/id/328
      吴根耀, 李曰俊, 刘亚雷, 等, 2013. 塔里木西北部乌什-柯坪-巴楚地区古生代沉积-构造演化及成盆动力学背景. 古地理学报, 15(2): 203-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302007.htm
      席勤, 余和中, 顾乔元, 等, 2016. 塔里木盆地阿瓦提凹陷主力烃源岩探讨及油源对比. 大庆石油地质与开发, 35(1): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201601003.htm
      徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376
      杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002007.htm
      张臣, 郑多明, 李江海, 2001. 柯坪断隆古生代的构造属性及其演化特征. 石油与天然气地质, 22(4): 314–318. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200104005.htm
      张君峰, 张远银, 高永进, 2022. 塔里木盆地沙井子构造带志留系油气勘探突破及启示. 石油勘探与开发, 49(1): 203-214. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201019.htm
      张子亚, 刘冬冬, 朱贝, 等, 2013. 塔里木盆地西北缘晚新生代印干断层的运动学特征及其区域构造意义. 大地构造与成矿学, 37(2): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201302003.htm
      朱光有, 曹颖辉, 闫磊, 等, 2018. 塔里木盆地8 000 m以深超深层海相油气勘探潜力与方向. 天然气地球科学, 29(6): 755-772. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202306002.htm
      朱光有, 陈斐然, 陈志勇, 等, 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (955) PDF downloads(177) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return