Citation: | Li Jialong, Kang Fengxin, Bai Tong, Zhang Pingping, Li Zhenhan, Zhao Qiang, 2024. Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters. Earth Science, 49(9): 3318-3333. doi: 10.3799/dqkx.2023.099 |
Bedre, M. G., Anderson, B. J., 2012. Sensitivity Analysis of Low-Temperature Geothermal Reservoirs: Effect of Reservoir Parameters on the Direct Use of Geothermal Energy. Transactions-Geothermal Resources Council, 36 2: 1255-1261
|
Bodvarsson, G., 1972. Thermal Problems in the Siting of Reinjection Wells. Geothermics, 1(2): 63-66. https://doi.org/10.1016/0375-6505(72)90013-2
|
Franco, A., Vaccaro, M., 2014. Numerical Simulation of Geothermal Reservoirs for the Sustainable Design of Energy Plants: A Review. Renewable and Sustainable Energy Reviews, 30: 987-1002. https://doi.org/10.1016/j.rser.2013.11.041
|
Ganguly, S., Mohan Kumar, M. S., 2014. Analytical Solutions for Transient Temperature Distribution in a Geothermal Reservoir Due to Cold Water Injection. Hydrogeology Journal, 22(2): 351-369. https://doi.org/10.1007/s10040-013-1048-2
|
He, M. C., Liu, B., Yao, L. H., et al., 2003. Study on the Theory of Seepage Field for Geothermal Single Well Reinjection. Acta Energiae Solaris Sinica, 24(2): 197-201 (in Chinese with English abstract). doi: 10.3321/j.issn:0254-0096.2003.02.012
|
Kang, F. X., 2018. Comprehensive Evaluation of Geothermal Clean Energy in Shandong Province. Science Press, Beijing (in Chinese).
|
Kang, F. X., Shi, Q. P., Ma, Z. M., et al., 2023a. Genetic Mechanism of the Karst Geothermal Reservoir in Buried Uplifts of Basins: A Case Study of Heze. Acta Geologica Sinica, 97(1): 221-237 (in Chinese with English abstract).
|
Kang, F. X., Zhao, J. C., Huang, X., et al., 2023b. Heat Accumulation Mechanism and Resources Potential of the Karst Geothermal Reservoir in Liangcun Buried Uplift of Linqing Depression. Earth Science, 48(3): 1080-1092 (in Chinese with English abstract).
|
Kang, F. X., Zhao, J. C., Tan, Z. R., et al., 2021. Geothermal Power Generation Potential in the Eastern Linqing Depression. Acta Geologica Sinica-English Edition, 95(6): 1870-1881. https://doi.org/10.1111/ 1755-6724.14877 doi: 10.1111/1755-6724.14877
|
Lei, H. Y., Zhu, J. L., 2010. Modeling of Exploitation and Reinjection of Porous Medium Geothermal Reservoir. Acta Energiae Solaris Sinica, 31(12): 1633-1638 (in Chinese with English abstract).
|
Liu, Z. T., Liu, S., Song, W. H., 2019. Change Characteristics of Geothermal Field for Geothermal Return Water Reinjection of Sandstone Reservoir in the Northern Shangdong. Acta Geologica Sinica, 93(S1): 149-156 (in Chinese with English abstract). doi: 10.1111/1755-6724.13999
|
Mottaghy, D., Pechnig, R., Vogt, C., 2011. The Geothermal Project Den Haag: 3D Numerical Models for Temperature Prediction and Reservoir Simulation. Geothermics, 40(3): 199-210. https://doi.org/10.1016/j.geothermics.2011.07.001
|
Obembe, A. D., Abu-Khamsin, S. A., Hossain, M. E., 2016. A Review of Modeling Thermal Displacement Processes in Porous Media. Arabian Journal for Science and Engineering, 41(12): 4719-4741. https://doi.org/10.1007/s13369-016-2265-5
|
Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2014. Experimental-Numerical Study of Heat Flow in Deep Low-Enthalpy Geothermal Conditions. Renewable Energy, 62: 716-730. https://doi.org/10.1016/j.renene.2013.08.037
|
Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2015. A Prototype Design Model for Deep Low-Enthalpy Hydrothermal Systems. Renewable Energy, 77: 408-422. https://doi.org/10.1016/j.renene.2014.12.018
|
Sauty, J. P., Gringarten, A. C., Landel, P. A., et al., 1980. Lifetime Optimization of Low Enthalpy Geothermal Doublets. Advances in European Geothermal Research. Springer, Dordrecht, 706-719. https://doi.org/10.1007/978-94-009-9059-3_64
|
Seibt, P., Kellner, T., 2003. Practical Experience in the Reinjection of Cooled Thermal Waters Back into Sandstone Reservoirs. Geothermics, 32(4-6): 733-741. https://doi.org/10.1016/s0375-6505(03)00071-3
|
Sippel, J., Fuchs, S., Cacace, M., et al., 2013. Deep 3D Thermal Modelling for the City of Berlin (Germany). Environmental Earth Sciences, 70(8): 3545-3566. https://doi.org/10.1007/s12665-013-2679-2
|
Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract).
|
Wu, L. J., Zhao, J. C., Li, A. Y., et al., 2016. Key Issues of Geothermal Resource Exploitation and Utilization in the Depression Area of Northern Shandong Province. Geology and Exploration, 52(2): 300-306 (in Chinese with English abstract).
|
Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract).
|
Zhao, J. C., 2013. Lubei Geothermal Tail Water Reinjection Experiments in Sandstone Reservoir. Shandong Land and Resources, 29(9): 23-30 (in Chinese with English abstract).
|
Zhu, J. L., Zhu, X. M., Lei, H. Y., 2012. Analysis of Impact of Pressure Compensation between Geothermal Wells on Reinjection Effeciency. Acta Energiae Solaris Sinica, 33(1): 56-62 (in Chinese with English abstract).
|
何满潮, 刘斌, 姚磊华, 等, 2003. 地热单井回灌渗流场理论研究. 太阳能学报, 24(2): 197-201. doi: 10.3321/j.issn:0254-0096.2003.02.012
|
康凤新, 2018. 山东省地热清洁能源综合评价. 北京: 科学出版社.
|
康凤新, 史启朋, 马哲民, 等, 2023a. 盆地潜凸起岩溶热储地热田成因机理: 以菏泽潜凸起为例. 地质学报, 97(1): 221-237.
|
康凤新, 赵季初, 黄迅, 等, 2023b. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力. 地球科学, 48(3): 1080-1092. doi: 10.3799/dqkx.2022.324
|
雷海燕, 朱家玲, 2010. 孔隙型地热采灌开发方案的数值模拟研究. 太阳能学报, 31(12): 1633-1638.
|
刘志涛, 刘帅, 宋伟华, 等, 2019. 鲁北地区砂岩热储地热尾水回灌地温场变化特征分析. 地质学报, 93(S1): 149-156.
|
王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
|
吴立进, 赵季初, 李艾银, 等, 2016. 鲁北坳陷区地热资源开发利用关键性问题研究. 地质与勘探, 52(2): 300-306.
|
徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401
|
赵季初, 2013. 鲁北砂岩热储地热尾水回灌试验研究. 山东国土资源, 29(9): 23-30.
|
朱家玲, 朱晓明, 雷海燕, 2012. 地热回灌井间压差补偿对回灌效率影响的分析. 太阳能学报, 33(1): 56-62.
|