• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 9
    Sep.  2024
    Turn off MathJax
    Article Contents
    Song Sai, Ye Liming, Yu Xiaoguo, Wu Ziyin, Zhang Yongzhan, Zhang Weiyan, Li Zhongqiao, Ji Zhongqiang, Jin Haiyan, Zhang Yongcong, Yang Ying, 2024. Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene. Earth Science, 49(9): 3387-3398. doi: 10.3799/dqkx.2023.105
    Citation: Song Sai, Ye Liming, Yu Xiaoguo, Wu Ziyin, Zhang Yongzhan, Zhang Weiyan, Li Zhongqiao, Ji Zhongqiang, Jin Haiyan, Zhang Yongcong, Yang Ying, 2024. Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene. Earth Science, 49(9): 3387-3398. doi: 10.3799/dqkx.2023.105

    Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene

    doi: 10.3799/dqkx.2023.105
    • Received Date: 2023-03-02
      Available Online: 2024-10-16
    • Publish Date: 2024-09-25
    • The burial of particulate organic carbon is a critical factor in assessing the Arctic Ocean's carbon sequestration capacity, but its burial characteristics on orbital timescales remain highly debated. This study further explores the composition, source, and burial rate of organic matter in the Late Pleistocene and its co-evolution with the surrounding ice sheet by analyzing indicators such as total organic carbon, stable isotopes, and biomarkers in Core M04 at the Chukchi continental margin and the surrounding surface sediments. Results show that terrestrial organic carbon is the primary component of organic carbon burial at the Chukchi continental margin, with significant differences observed over glacial-interglacial cycles, with a low burial rate during the interglacial periods (MIS1 and MIS3) and a sharp increase in burial rate during the glacial periods (MIS4 and MIS2). Combined with the geomorphic features and depositional environment, the expansion of the East Siberian ice sheet (ESIS) and the transport of subglacial drainage systems may be the main controlling factors for the secondary transport of shelf organic carbon and its rapid burial at the continental margin. M04's records provide a new perspective to unravel the characteristics of organic carbon burial, further revealing the mechanisms in the high-sedimentation-rate area of the Arctic Ocean, and help to objectively evaluate the role of Arctic Ocean carbon burial in promoting global carbon sequestration. However, further research, especially records from Arctic Canada, is needed to fully describe the coupling relationship between Arctic Ocean carbon burial and climate transition.

       

    • loading
    • Aller, R. C., Blair, N. E., Brunskill, G. J., 2008. Early Diagenetic Cycling, Incineration, and Burial of Sedimentary Organic Carbon in the Central Gulf of Papua (Papua New Guinea). Journal of Geophysical Research: Earth Surface, 113(F1): F01S09. https://doi.org/10.1029/2006jf000689
      Anthony, K. W., Zimov, S. A., Grosse, G., et al., 2014. A Shift of Thermokarst Lakes from Carbon Sources to Sinks during the Holocene Epoch. Nature, 511(7510): 452-456. https://doi.org/10.1038/nature13560
      Arguez, A., Durre, I., Applequist, S., et al., 2012. NOAA's 1981-2010 U. S. Climate Normals: An Overview. Bulletin of the American Meteorological Society, 93(11): 1687-1697. https://doi.org/10.1175/bams-d-11-00197.1
      Astakhov, A. S., Gusev, E. A., Kolesnik, A. N., et al., 2013. Conditions of the Accumulation of Organic Matter and Metals in the Bottom Sediments of the Chukchi Sea. Russian Geology and Geophysics, 54(9): 1056-1070. https://doi.org/10.1016/j.rgg.2013.07.019
      Astakhov, A. S., Sattarova, V. V., Shi, X., et al., 2019. Distribution and Sources of Rare Earth Elements in Sediments of the Chukchi and East Siberian Seas, Polar Science, 20(Part2): 148-159. https://doi.org/10.1016/j.polar.2019.05.005
      Bates, N. R., 2006. Air-Sea CO2 Fluxes and the Continental Shelf Pump of Carbon in the Chukchi Sea Adjacent to the Arctic Ocean. Journal of Geophysical Research: Oceans, 111(C10): C10013. https://doi.org/10.1029/2005jc003083
      Belicka, L. L., Harvey, H. R., 2009. The Sequestration of Terrestrial Organic Carbon in Arctic Ocean Sediments: A Comparison of Methods and Implications for Regional Carbon Budgets. Geochimica et Cosmochimica Acta, 73(20): 6231-6248. https://doi.org/10.1016/j.gca.2009.07.020
      Bröder, L., Tesi, T., Andersson, A., et al., 2018. Bounding Cross-Shelf Transport Time and Degradation in Siberian-Arctic Land-Ocean Carbon Transfer. Nature Communications, 9: 806. https://doi.org/10.1038/s41467-018-03192-1
      Cartapanis, O., Bianchi, D., Jaccard, S. L., et al., 2016. Global Pulses of Organic Carbon Burial in Deep-Sea Sediments during Glacial Maxima. Nature Communications, 7: 10796. https://doi.org/10.1038/ncomms10796
      Coffin, R., Smith, J., Yoza, B., et al., 2017. Spatial Variation in Sediment Organic Carbon Distribution across the Alaskan Beaufort Sea Shelf. Energies, 10(9): 1265. https://doi.org/10.3390/en10091265
      Corlett, W. B., Pickart, R. S., 2017. The Chukchi Slope Current. Progress in Oceanography, 153: 50-65. https://doi.org/10.1016/j.pocean.2017.04.005
      Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of Aquatic Organisms as Potential Contributors to Lacustrine Sediments-Ⅱ. Organic Geochemistry, 11(6): 513-527. https://doi.org/10.1016/0146-6380(87)90007-6
      Danielson, S. L., Eisner, L., Ladd, C., et al., 2017. A Comparison between Late Summer 2012 and 2013 Water Masses, Macronutrients, and Phytoplankton Standing Crops in the Northern Bering and Chukchi Seas. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 135: 7-26. https://doi.org/10.1016/j.dsr2.2016.05.024
      Darby, D. A., Ortiz, J., Polyak, L., et al., 2009. The Role of Currents and Sea Ice in both Slowly Deposited Central Arctic and Rapidly Deposited Chukchi-Alaskan Margin Sediments. Global and Planetary Change, 68(1-2): 58-72. https://doi.org/10.1016/j.gloplacha.2009.02.007
      Ding, J. H., Sun, J. S., Zhang, J. C., et al., 2023. Characteristics and Geological Significance of Biomarker for the Upper Permian Dalong Formation Shale in Southern Anhui Province. Earth Science, 48(1): 235-251 (in Chinese with English abstract).
      Gao, C., Yu, X. G., Yang, Y., et al., 2018. Characteristics of Lipid Biomakers and Their Response to Climate Change in Column Sediments from Bering Sea Shelf. Earth Science, 43(11): 4008-4017 (in Chinese with English abstract).
      Goñi, M. A., O'Connor, A. E., Kuzyk, Z. Z., et al., 2013. Distribution and Sources of Organic Matter in Surface Marine Sediments across the North American Arctic Margin. Journal of Geophysical Research: Oceans, 118(9): 4017-4035. https://doi.org/10.1002/jgrc.20286
      Goñi, M. A., Ruttenberg, K. C., Eglinton, T. I., 1997. Sources and Contribution of Terrigenous Organic Carbon to Surface Sediments in the Gulf of Mexico. Nature, 389(6648): 275-278. https://doi.org/10.1038/38477
      Harada, N., 2016. Review: Potential Catastrophic Reduction of Sea Ice in the Western Arctic Ocean: Its Impact on Biogeochemical Cycles and Marine Ecosystems. Global and Planetary Change, 136: 1-17. https://doi.org/10.1016/j.gloplacha.2015.11.005
      Hill, J. C., Driscoll, N. W., Brigham-Grette, J., et al., 2007. New Evidence for High Discharge to the Chukchi Shelf since the Last Glacial Maximum. Quaternary Research, 68(2): 271-279. https://doi.org/10.1016/j.yqres.2007.04.004
      Hill, V., Ardyna, M., Lee, S. H., et al., 2018. Decadal Trends in Phytoplankton Production in the Pacific Arctic Region from 1950 to 2012. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 152: 82-94. https://doi.org/10.1016/j.dsr2.2016.12.015
      Hugelius, G., Strauss, J., Zubrzycki, S., et al., 2014. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11(23): 6573-6593. https://doi.org/10.5194/bg-11-6573-201410.5194/bgd-11-4771-2014
      Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., et al., 2014. Arctic Ocean Glacial History. Quaternary Science Reviews, 92: 40-67. https://doi.org/10.1016/j.quascirev.2013.07.033
      Jakobsson, M., Nilsson, J., Anderson, L., et al., 2016. Evidence for an Ice Shelf Covering the Central Arctic Ocean during the Penultimate Glaciation. Nature Communications, 7: 10365. https://doi.org/10.1038/ncomms10365
      Ji, Z. Q., Jin, H. Y., Stein, R., et al., 2019. Distribution and Sources of Organic Matter in Surface Sediments of the Northern Bering and Chukchi Seas by Using Bulk and Tetraether Proxies. Journal of Ocean University of China, 18(3): 563-572. https://doi.org/10.1007/s11802-019-3869-7
      Kim, S., Polyak, L., Joe, Y. J., et al., 2021. Seismostratigraphic and Geomorphic Evidence for the Glacial History of the Northwestern Chukchi Margin, Arctic Ocean. Journal of Geophysical Research (Earth Surface), 126(4): e2020JF006030. https://doi.org/10.1029/2020JF00603010.1002/essoar.10505223.1
      Kremer, A., Stein, R., Fahl, K., et al., 2018. Changes in Sea Ice Cover and Ice Sheet Extent at the Yermak Plateau during the Last 160 ka: Reconstructions from Biomarker Records. Quaternary Science Reviews, 182: 93-108. https://doi.org/10.1016/j.quascirev.2017.12.016
      Li, Z. Y., Zhang, Y. G., Torres, M., et al., 2023. Neogene Burial of Organic Carbon in the Global Ocean. Nature, 613(7942): 90-95. https://doi.org/10.1038/s41586-022-05413-6
      Löwemark, L., März, C., O'Regan, M., et al., 2014. Arctic Ocean Mn-Stratigraphy: Genesis, Synthesis and Inter-Basin Correlation. Quaternary Science Reviews, 92: 97-111. https://doi.org/10.1016/j.quascirev.2013.11.018
      Martens, J., Wild, B., Muschitiello, F., et al., 2020. Remobilization of Dormant Carbon from Siberian-Arctic Permafrost during Three Past Warming Events. Science Advances, 6(42): eabb6546. https://doi.org/10.1126/sciadv.abb6546
      Martens, J., Wild, B., Pearce, C., et al., 2019. Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments during the End of the last Deglaciation. Global Biogeochemical Cycles, 33(1): 2-14. https://doi.org/10.1029/2018GB005969
      Naidu, A. S., Cooper, L. W., Finney, B. P., et al., 2000. Organic Carbon Isotope Ratios (δ13C) of Arctic Amerasian Continental Shelf Sediments. International Journal of Earth Sciences, 89(3): 522-532. https://doi.org/10.1007/s005310000121
      Niessen, F., Hong, J. K., Hegewald, A., et al., 2013. Repeated Pleistocene Glaciation of the East Siberian Continental Margin. Nature Geoscience, 6: 842-846. https://doi.org/10.1038/ngeo1904
      Nürnberg, D., Wollenburg, I., Dethleff, D., et al., 1994. Sediments in Arctic Sea Ice: Implications for Entrainment, Transport and Release. Marine Geology, 119(3-4): 185-214. https://doi.org/10.1016/0025-3227(94)90181-3
      O'Daly, S. H., Danielson, S. L., Hardy, S. M., et al., 2020. Extraordinary Carbon Fluxes on the Shallow Pacific Arctic Shelf during a Remarkably Warm and Low Sea Ice Period. Frontiers in Marine Science, 7: 548931. https://doi.org/10.3389/fmars.2020.548931
      Olefeldt, D., Goswami, S., Grosse, G., et al., 2016. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nature Communications, 7: 13043. https://doi.org/10.1038/ncomms13043
      Peng, G., Matthews, J. L., Wang, M. Y., et al., 2020. What do Global Climate Models Tell us about Future Arctic Sea Ice Coverage Changes? Climate, 8(1): 15. https://doi.org/10.3390/cli8010015
      Pirtle-Levy, R., Grebmeier, J. M., Cooper, L. W., et al., 2009. Chlorophyll a in Arctic Sediments Implies Long Persistence of Algal Pigments. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 56(17): 1326-1338. https://doi.org/10.1016/j.dsr2.2008.10.022
      Polyak, L., Bischof, J., Ortiz, J. D., et al., 2009. Late Quaternary Stratigraphy and Sedimentation Patterns in the Western Arctic Ocean. Global and Planetary Change, 68(1-2): 5-17. https://doi.org/10.1016/j.gloplacha.2009.03.014
      Schreck, M., Nam, S. I., Polyak, L., et al., 2018. Improved Pleistocene Sediment Stratigraphy and Paleoenvironmental Implications for the Western Arctic Ocean off the East Siberian and Chukchi Margins. arktos, 4(1): 1-20. https://doi.org/10.1007/s41063-018-0057-8
      Schwab, M. S., Rickli, J. D., MacDonald, R. W., et al., 2021. Detrital Neodymium and (Radio) Carbon as Complementary Sedimentary Bedfellows? The Western Arctic Ocean as a Testbed. Geochimica et Cosmochimica Acta, 315: 101-126. https://doi.org/10.1016/j.gca.2021.08.019
      Semiletov, I., Pipko, I., Gustafsson, Ö., et al., 2016. Acidification of East Siberian Arctic Shelf Waters through Addition of Freshwater and Terrestrial Carbon. Nature Geoscience, 9: 361-365. https://doi.org/10.1038/ngeo2695
      Sparkes, R. B., Doğrul Selver, A., Bischoff, J., et al., 2015. GDGT Distributions on the East Siberian Arctic Shelf: Implications for Organic Carbon Export, Burial and Degradation. Biogeosciences, 12(12): 3753-3768. https://doi.org/10.5194/bg-12-3753-2015
      Spratt, R. M., Lisiecki, L. E., 2016. A Late Pleistocene Sea Level Stack. Climate of the Past, 12(4): 1079-1092. https://doi.org/10.5194/cp-12-1079-2016
      Stein, R., Boucsein, B., Fahl, K., et al., 2001. Accumulation of Particulate Organic Carbon at the Eurasian Continental Margin during Late Quaternary Times: Controlling Mechanisms and Paleoenvironmental Significance. Global and Planetary Change, 31(1-4): 87-104. https://doi.org/10.1016/s0921-8181(01)00114-x
      Stein, R., Fahl, K., Gierz, P., et al., 2017. Arctic Ocean Sea Ice Cover during the Penultimate Glacial and the last Interglacial. Nature Communications, 8: 373. https://doi.org/10.1038/s41467-017-00552-1
      Stein, R., Macdonald, R. W., 2004. The Organic Carbon Cycle in the Arctic Ocean. Springer Verlag, Berlin.
      Talley, L. D., Pickard, G. L., Emery, W. J., et al., 2011. Descriptive Physical Oceanography: An introduction. Academic Press, New York.
      Viscosi-Shirley, C., Mammone, K., Pisias, N., et al., 2003. Clay Mineralogy and Multi-Element Chemistry of Surface Sediments on the Siberian-Arctic Shelf: Implications for Sediment Provenance and Grain Size Sorting. Continental Shelf Research, 23(11-13): 1175-1200. https://doi.org/10.1016/s0278-4343(03)00091-8
      Vonk, J. E., Sánchez-García, L., Semiletov, I., et al., 2010. Molecular and Radiocarbon Constraints on Sources and Degradation of Terrestrial Organic Carbon along the Kolyma Paleoriver Transect, East Siberian Sea. Biogeosciences, 7(10): 3153-3166. https://doi.org/10.5194/bg-7-3153-2010
      Xiang, Y., Lam, P. J., 2020. Size-Fractionated Compositions of Marine Suspended Particles in the Western Arctic Ocean: Lateral and Vertical Sources. Journal of Geophysical Research: Oceans, 125(8): e2020JC016144. https://doi.org/10.1029/2020jc016144
      Yamamoto, M., Okino, T., Sugisaki, S., et al., 2008. Late Pleistocene Changes in Terrestrial Biomarkers in Sediments from the Central Arctic Ocean. Organic Geochemistry, 39(6): 754-763. https://doi.org/10.1016/j.orggeochem.2008.04.009
      Ye, L. M., Yu, X. G., Xu, D., et al., 2022. Late Pleistocene Laurentide-Source Iceberg Outbursts in the Western Arctic Ocean. Quaternary Science Reviews, 297: 107836. https://doi.org/10.1016/j.quascirev.2022.107836
      Ye, L. M., Yu, X. G., Zhang, W. Y., et al., 2020. Ice Sheet Controls on Fine-Grained Deposition at the Southern Mendeleev Ridge since the Penultimate Interglacial. Acta Oceanologica Sinica, 39(9): 86-95. https://doi.org/10.1007/s13131-020-1649-2
      Yu, X. G., Bian, Y. P., Ruan, X. Y., et al., 2015. Glycerol Dialkyl Glyceroltetraethers and TEX86 Index in Surface Sediments of the Arctic Ocean and the Bering Sea. Marine Geology & Quaternary Geology, 35(3): 11-22 (in Chinese with English abstract).
      Zhang, J. H., Pei, H. Y., Zhao, S. J., et al., 2020. The Impact of Degradation on the Tetraether-Based Proxies during the Sample Storage. Earth Science, 45(1): 317-329 (in Chinese with English abstract).
      丁江辉, 孙金声, 张金川, 等, 2023. 皖南地区大隆组页岩生物标志化合物特征及其地质意义. 地球科学, 48(1): 235-251. doi: 10.3799/dqkx.2022.140
      高超, 于晓果, 杨义, 等, 2018. 白令海陆架区柱样沉积物脂类分子特征及其气候变化响应. 地球科学, 43(11): 4008-4017. doi: 10.3799/dqkx.2018.726
      于晓果, 边叶萍, 阮小燕, 等, 2015. 北冰洋沉积物中四醚脂类来源与TEX86指数初步研究. 海洋地质与第四纪地质, 35(3): 11-22.
      张佳皓, 裴宏业, 赵世锦, 等, 2020. 样品保存过程中降解对GDGTs环境代用指标的影响. 地球科学, 45(1): 317-329. doi: 10.3799/dqkx.2018.319
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(1)

      Article views (261) PDF downloads(34) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return