• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 11
    Nov.  2023
    Turn off MathJax
    Article Contents
    Li Yangfan, Li Fei, Wang Xia, Li Xiang, Li Yilin, Wang Zengjun, Li Yalan, Yi Chuheng, Zeng Wei, 2023. Sedimentary Characteristics and Paleoenvironmental Significance of Early Cambrian Metazoan Reefs in Northern Margin of Upper Yangtze Block. Earth Science, 48(11): 4321-4334. doi: 10.3799/dqkx.2023.106
    Citation: Li Yangfan, Li Fei, Wang Xia, Li Xiang, Li Yilin, Wang Zengjun, Li Yalan, Yi Chuheng, Zeng Wei, 2023. Sedimentary Characteristics and Paleoenvironmental Significance of Early Cambrian Metazoan Reefs in Northern Margin of Upper Yangtze Block. Earth Science, 48(11): 4321-4334. doi: 10.3799/dqkx.2023.106

    Sedimentary Characteristics and Paleoenvironmental Significance of Early Cambrian Metazoan Reefs in Northern Margin of Upper Yangtze Block

    doi: 10.3799/dqkx.2023.106
    • Received Date: 2023-04-21
      Available Online: 2023-11-30
    • Publish Date: 2023-11-25
    • As a complex marine ecosystem, reefs underwent a significant change in the composition of major builders during the Precambrian-Cambrian transition. The wide distribution of reef-building metazoans was likely a response to the co-evolution of life and oceans in the Early Cambrian. In this study, it performed a systematic sedimentological analysis on the archaeocyath-bearing reefs of the Xiannüdong Formation in the northern margin of the Upper Yangtze block. Petrological evidence indicates that the archaeocyaths may have contributed to the formation of the reefs individually or in combination with calcimicrobes. In some situations, archaeocyaths acted only as inhabitants of large thrombolitic reefs. The archaeocyath-dominated reefs are characterized by low-relief morphological units and partially cemented internal structures, and are thought to have formed in mid-ramp and inter-shoal environments with relatively low hydrodynamic conditions. Archaeocyath-calcimicrobial reefs and archaeocyath-bearing microbial reefs can form separately or develop as multiple stacked complexes in depositional successions thought to have formed in subtidal environments. Within the reef complexes, some archaeocyaths are coated or crusted by calcified microbes and few reefal cements are visible. The lack of archaeocyath-dominated reefs in shallow, high-energy conditions may be related to their small body size and thin skeletal structures, which cannot withstand the washing and destruction of waves and storms during this period. In addition, the relatively high nutrient levels in coastal environments, possibly caused by increased terrigenous input, may be more conducive to the development of calcimicrobe-dominated reef systems than archaeocyath-dominated reefs due to the greater nutrient competitiveness of the microbes.

       

    • loading
    • Brasier, M. D., 1990. Nutrients in the Early Cambrian. Nature, 347(6293): 521-522. https://doi.org/10.1038/347521b0
      Burchette, T. P., Wright, V. P., 1992. Carbonate Ramp Depositional Systems. Sedimentary Geology, 79(1-4): 3-57. https://doi.org/10.1016/0037-0738(92)90003-A
      Deng, J. T., Li, F., Gong, Q. L., et al., 2021. Characteristics and Palaeoceanographic Significances of Microbialite Development in the Ediacaran-Cambrian Transition: A Case Study from Hannan-Micangshan Area. Journal of Palaeogeography, 23(5): 919-936 (in Chinese with English abstract).
      Duan, J. B., Mei, Q. H., Li, B. S., et al., 2019. Sinian-Early Cambrian Tectonic-Sedimentary Evolution in Sichuan Basin. Earth Science, 44(3): 738-755 (in Chinese with English abstract).
      Einsele, G., 2000. Sedimentation Rates and Organic Matter in Various Depositional Environments. In: Einsele, G., ed., Sedimentary Basins: Evolution, Facies, and Sediment Budget. Springer, Berlin, Heidelberg, 455-479. https://doi.org/10.1007/978-3-662-04029-4_10
      Fan, J. S., Zhang, W., 1985. On the Basic Concept and Classification of Organic Reefs and Their Main Identifying Criteria. Acta Petrologica Sinica, 1(3): 45-59, 97 (in Chinese with English abstract).
      Gong, Q. L., Li, F., Su, C. P., et al., 2018. Characteristics, Distribution and Mechanisms of Fine-Grained Turbidite: A Case Study from the Cambrian Guojiaba Formation in Tangjiahe Section, Northern Sichuan Basin. Journal of Palaeogeography, 20(3): 349-364 (in Chinese with English abstract).
      Hallock, P., 2001. Coral Reefs, Carbonate Sediments, Nutrients, and Global Change. In: Stanley, G. D., ed., The History and Sedimentology of Ancient Reef Systems. Springer US, Boston, 387-427. https://doi.org/10.1007/978-1-4615-1219-6
      Hicks, M., Rowland, S. M., 2009. Early Cambrian Microbial Reefs, Archaeocyathan Inter-Reef Communities, and Associated Facies of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(1-2): 137-153. https://doi.org/10.1016/j.palaeo.2009.07.018
      Humphreys, A. F., Purkis, S. J., Wan, C., et al., 2022. A New Foraminiferal Bioindicator for Long-Term Heat Stress on Coral Reefs. Journal of Earth Science, 33(6): 1451-1459. doi: 10.1007/s12583-021-1543-7
      James, N. P., Gravestock, D. I., 1990. Lower Cambrian Shelf and Shelf Margin Buildups, Flinders Ranges, South Australial. Sedimentology, 37(3): 455-480. doi: 10.1111/j.1365-3091.1990.tb00147.x
      James, N. P., Wood, R., 2010. Reefs. In: James, N. P., Dalrymple, R. W., eds., Facies Models 4. Geological Association of Canada, St. John's, 421-447.
      Kiessling, W., Flügel, E., Golonka, J., 2002. Secular Variations in the Phanerozoic Reef Ecosystem. In: Kiessling, W., Flügel, E., Golonka, J., eds., Phanerozoic Reef Patterns. SEPM Special Publication, Tulsu, Oklahoma, 625-690. https://doi.org/10.2110/pec.02.72
      Kruse, P. D., Gandin, A., Debrenne, F., et al., 1996. Early Cambrian Bioconstructions in the Zavkhan Basin of Western Mongolia. Geological Magazine, 133(4): 429-444. doi: 10.1017/S0016756800007597
      Kruse, P. D., Zhuravlev, A. Y., James, N. P., 1995. Primordial Metazoan-Calcimicrobial Reefs: Tommotian (Early Cambrian) of the Siberian Platform. PALAIOS, 10(4): 291. https://doi.org/10.2307/3515157
      Larcombe, P., Costen, A., Woolfe, K. J., 2001. The Hydrodynamic and Sedimentary Setting of Nearshore Coral Reefs, Central Great Barrier Reef Shelf, Australia: Paluma Shoals, a Case Study. Sedimentology, 48(4): 811-835. https://doi.org/10.1046/j.1365-3091.2001.00396.x
      Lee, J. H., Riding, R., 2018. Marine Oxygenation, Lithistid Sponges, and the Early History of Paleozoic Skeletal Reefs. Earth-Science Reviews, 181: 98-121. https://doi.org/10.1016/j.earscirev.2018.04.003
      Li, F., Deng, J. T., Kershaw, S., et al., 2021a. Microbialite Development through the Ediacaran-Cambrian Transition in China: Distribution, Characteristics, and Paleoceanographic Implications. Global and Planetary Change, 205: 103586. https://doi.org/10.1016/j.gloplacha.2021.103586
      Li, H., Li, F., Li, X., et al., 2021b. Development and Collapse of the Early Cambrian Shallow-Water Carbonate Factories in the Hannan-Micangshan Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 583: 110665. https://doi.org/10.1016/j.palaeo.2021.110665
      Li, H., Li, F., Gong, Q. L., et al., 2021. Morphological Characteristics and Provenance Significance of Heavy Minerals in the Mixed Siliciclastic-Carbonate Sedimentation: A Case Study from the Xiannüdong Formation, Cambrian (Series 2), Northern Sichuan. Acta Sedimentologica Sinica, 39(3): 525-539 (in Chinese with English abstract).
      Li, Y. F., Li, F., 2022. How Did the Reefs Evolve during the Major Turning Point of Precambrian-Cambrian?. Earth Science, 47(10): 3853-3855 (in Chinese).
      Li, Y. L., Li, F., Kershaw, S., et al., 2023. Extensive Occurrences of Lower Cambrian Red Beds in South China: Composition, Characteristics, and Implications for Global Environmental Change. Marine and Petroleum Geology, 157: 106475. https://doi.org/10.1016/j.marpetgeo.2023.106475
      Li, Y. L., Li, F., Li, X., et al., 2023. Factors Influencing the Composition of Shallow-Water Mixed Siliciclastic Carbonate Sedimentation from Cambrian Series 2: A Case Study on the Xiannüdong Formation of the Zhujiaba Section (Southern Shaanxi). Acta Sedimentologica Sinica, 1-16 (in Chinese with English abstract).
      Li, Y. L., Li, F., Lü, Y. J., et al., 2023. Petrographic Features and Paleoenvironmental Significance of the Lower Cambrian Reef inthe Xiannüdong Formation, Mian County, Southern Shaanxi. Acta Sedimentologica Sinica, 1-11 (in Chinese with English abstract).
      Liu, B. C., Qi, Y. A., Dai, M. Y., et al., 2021. Benthic Ecosystem Engineer after the Cambrian Explosion: An Example from Henan Province. Journal of Earth Science, 46(1): 148-161 (in Chinese with English abstract).
      Montaggioni, L. F., Braithwaite, C. J. R., 2009. Chapter Eight Reef Diagenesis. Quaternary Coral Reef Systems: History, Development Processes and Controlling Factors. Elsevier, Amsterdam, 323-372. https://doi.org/10.1016/s1572-5480(09)05008-8
      Penny, A. M., Wood, R., Curtis, A., et al., 2014. Ediacaran Metazoan Reefs from the Nama Group, Namibia. Science, 344: 1504-1506. https://sci-hub.se/10.1126/science.1253393 doi: 10.1126/science.1253393
      Pratt, B. R., Spincer, B. R., Wood, R. A., et al., 2000. Ecology and Evolution of Cambrian Reefs. In: Andrey, Z., Robert, R., eds., The Ecology of the Cambrian Radiation. Columbia University Press, New York, 254-274. https://doi.org/10.7312/zhur10612
      Riding, R., 2002. Structure and Composition of Organic Reefs and Carbonate Mud Mounds: Concepts and Categories. Earth-Science Reviews, 58(1/2): 163-231. https://doi.org/10.1016/S0012-8252(01)00089-7
      Rowland, S. M., Gangloff, R. A., 1988. Structure and Paleoecology of Lower Cambrian Reefs. PALAIOS, 3(2): 111. https://doi.org/10.2307/3514525
      Rowland, S. M., Shapiro, R. S., 2002. Reef Patterns and Environmental Influences in the Cambrian and Earliest Ordovician. In: Kiessling, W., Flügel, E., Golonka, J., eds., Phanerozoic Reef Patterns. SEPM Special Publication, Tulsu, Oklahoma, 98-128. https://doi.org/10.2110/pec.02.72
      Schroeder, J. H., Purser, B. H., 1986. Reef Diagenesis. Springer-Verlag, Berlin, Heidelberg, 455. https://doi.org/10.1007/978-3-642-82812-6.
      Tang, H., Kershaw, S., Tan, X. C., et al., 2019. Sedimentology of Reefal Buildups of the Xiannüdong Formation (Cambrian Series 2), SW China. Journal of Palaeogeography, 8(1): 1-11. https://doi.org/10.1186/s42501-019-0022-x
      Webb, G. E., Baker, J. C., Jell, J. S., 1998. Inferred Syngenetic Textural Evolution in Holocene Cryptic Reefal Microbialites, Heron Reef, Great Barrier Reef, Australia. Geology, 26(4): 355. https://doi.org/10.1130/0091-7613(1998)0260355:isteih>2.3.co;2 doi: 10.1130/0091-7613(1998)0260355:isteih>2.3.co;2
      Wood, R., Zhuravlev, A. Y., Debrenne, F., 1992. Functional Biology and Ecology of Archaeocyatha. PALAIOS, 7(2): 131. https://doi.org/10.2307/3514925
      Xiang, L. W., Zhu, Z. L., Li, S. J., et al., 1999. Stratigraphic Lexicon of China. Cambrian System. Geological Publishing House, Beijing, 95 (in Chinese).
      Yang, A. H., 2005. The Early Cambrian Archaeocyaths and Their Extinction Event on the Yangtze Platform (Dissertation). Najing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Najing (in Chinese with English abstract).
      Yang, H. N., Mao, Y. Y., Pan, B., et al., 2016. Microfacies Sequences of the Early Cambrian (Series 2) Xiannvdong Formation Reefs in Southern Shaanxi Province, NW China. Acta Micropalaeontologica Sinica, 33(1): 75-86 (in Chinese with English abstract).
      Yang, Y. Y., Ye, J., 1996. Early Cambrian Reef from Yangjiagou, Xixiang, Shaanxi Province. Northwestern Geology, 17(2): 1-5 (in Chinese).
      Zeng, K., Li, F., Gong, Q. L., et al., 2020. Characteristics and Paleoenvironmental Significance of Mixed Siliciclastic-Carbonate Sedimentation in the Xiannüdong Formation, Cambrian (Series 2): A Case Study from the Tangjiahe Section, Wangcang, Northern Sichuan. Acta Sedimentologica Sinica, 38(1): 166-181 (in Chinese with English abstract).
      Zhang, M. Q., Hong, J., Choh, S. J., et al., 2017. Thrombolite Reefs with Archaeocyaths from the Xiannüdong Formation (Cambrian Series 2), Sichuan, China: Implications for Early Paleozoic Bioconstruction. Geosciences Journal, 21(5): 655-666. https://doi.org/10.1007/s12303-017-0011-y
      Zhuravlev, A. Y., 1996. Reef Ecosytem Recovery after the Early Cambrian Extinction. Geological Society, London, Special Publications, 102(1): 79-96. https://doi.org/10.1144/gsl.sp.1996.001.01.06
      Zhuravlev, A. Y., Wood, R., 1995. Lower Cambrian Reefal Cryptic Communities. Palaeontology, 38: 443-470. https://www.biodiversitylibrary.org/part/174228
      邓嘉婷, 李飞, 龚峤林, 等, 2021. 埃迪卡拉纪‒寒武纪之交微生物岩特征对比及古海洋学意义: 以汉南‒米仓山地区为例. 古地理学报, 23(5): 919-936. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202105006.htm
      段金宝, 梅庆华, 李毕松, 等, 2019. 四川盆地震旦纪‒早寒武世构造‒沉积演化过程. 地球科学, 44(3): 738-755. doi: 10.3799/dqkx.2018.335
      范嘉松, 张维, 1985. 生物礁的基本概念、分类及识别特征. 岩石学报, 1(3): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198503004.htm
      龚峤林, 李飞, 苏成鹏, 等, 2018. 细粒浊积岩特征、分布及发育机制: 以川北唐家河剖面寒武系郭家坝组为例. 古地理学报, 20(3): 349-364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803001.htm
      李红, 李飞, 龚峤林, 等, 2021. 混积岩中重矿物形貌学特征及物源意义——以川北寒武系第二统仙女洞组为例. 沉积学报, 39(3): 525-539. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202103003.htm
      李杨凡, 李飞, 2022. 前寒武‒寒武纪重大转折期生物礁是如何演化的?. 地球科学, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838
      李怡霖, 李飞, 李翔, 等, 2023. 寒武系第二统浅水混合沉积发育特征及影响因素——以陕南朱家坝剖面仙女洞组为例. 沉积学报, 1-16.
      李雅兰, 李飞, 吕月建, 等, 2023. 陕南勉县寒武系仙女洞组生物礁岩相学及古环境分析. 沉积学报, 1-11.
      刘炳辰, 齐永安, 代明月, 等, 2021. 寒武纪生物大爆发之后的底栖生态系统工程建造者: 以河南地区为例. 地球科学, 46(1): 148-161. doi: 10.3799/dqkx.2019.245
      项礼文, 朱兆玲, 李善姬, 等, 1999. 中国地层典  寒武系. 北京: 地质出版社, 95.
      杨爱华, 2005. 扬子地台早寒武世古杯动物群及其灭绝事件(博士学位论文). 南京: 中国科学院南京地质古生物研究所.
      杨慧宁, 毛颖颜, 潘兵, 等, 2016. 陕南寒武纪早期仙女洞组生物礁灰岩微相序列. 微体古生物学报, 33(1): 75-86. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201601009.htm
      杨友运, 叶俭, 1996. 陕西西乡杨家沟早寒武世的生物礁. 西北地质, 17(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI602.000.htm
      曾楷, 李飞, 龚峤林, 等, 2020. 寒武系第二统仙女洞组混合沉积特征及古环境意义——以川北旺苍唐家河剖面为例. 沉积学报, 38(1): 166-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001014.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (609) PDF downloads(87) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return