• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 9
    Sep.  2024
    Turn off MathJax
    Article Contents
    Tian Wen, Wang Hongmei, Xiang Xing, Wang Ruicheng, Huang Xianyu, 2024. Characteristics of Microbial Carbon Utilization in Peat Pore Water in the Dajiuhu Peatland, Shennongjia. Earth Science, 49(9): 3241-3251. doi: 10.3799/dqkx.2023.112
    Citation: Tian Wen, Wang Hongmei, Xiang Xing, Wang Ruicheng, Huang Xianyu, 2024. Characteristics of Microbial Carbon Utilization in Peat Pore Water in the Dajiuhu Peatland, Shennongjia. Earth Science, 49(9): 3241-3251. doi: 10.3799/dqkx.2023.112

    Characteristics of Microbial Carbon Utilization in Peat Pore Water in the Dajiuhu Peatland, Shennongjia

    doi: 10.3799/dqkx.2023.112
    • Received Date: 2023-02-28
      Available Online: 2024-10-16
    • Publish Date: 2024-09-25
    • In order to investigate the characteristics of microbial carbon metabolic activity in peatlands with water table fluctuation, microbial community-level physiological profiling of peat pore water was determined with the different water table levels using Biolog-Eco microplate technology in the Dajiuhu Peatland, Shennongjia Forestry District. The results show that the rate and diversity of microbial carbon utilization at the mediate water table were the highest, followed by the low water table, with the lowest at the high water table. Esters (pyruvic acid methyl ester, Tween 40, Tween 80 and D-Galactonic acid γ-lactone), amino acids (L-arginine, L-asparagine, L-phenylalanine, L-serine and glycyl-L-glutamic acid) and amines (phenylethylamine, putrescine and N-acetyl-D-glucosamine) were the main contributors to the variations in microbial carbon utilization of peat pore water. Redundancy analysis and fitting regression model indicate that electrical conductivity (F=3.2, P=0.018) and oxidation-reduction potential (F=2.6, P=0.044) driven by water table level affected microbial carbon utilization of peat pore water. This study reveals the effect of water table fluctuation on microbial carbon utilization in peat pore water, which enriches our understanding of carbon cycle in peatlands in the context of global climate change.

       

    • loading
    • Barel, J. M., Moulia, V., Hamard, S., et al., 2021. Come Rain, Come Shine: Peatland Carbon Dynamics Shift under Extreme Precipitation. Frontiers in Environmental Science, 9: 659953. https://doi.org/10.3389/fenvs.2021.659953
      Benoit, J. M., Shull, D. H., Harvey, R. M., et al., 2009. Effect of Bioirrigation on Sediment-Water Exchange of Methylmercury in Boston Harbor, Massachusetts. Environmental Science & Technology, 43(10): 3669-3674. https://doi.org/10.1021/es803552q
      Chen, H., Wu, N., Wang, Y. F., et al., 2021. A Historical Overview about Basic Issues and Studies of Mires. Science in China (Series D), 51(1): 15-26 (in Chinese with English abstract).
      Chen, Z., Li, Y. Z., Peng, Y. Y., et al., 2022. Feasibility of Sewage Sludge and Food Waste Aerobic Co-Composting: Physicochemical Properties, Microbial Community Structures, and Contradiction between Microbial Metabolic Activity and Safety Risks. The Science of the Total Environment, 825: 154047. https://doi.org/10.1016/j.scitotenv.2022.154047
      Corzo, A., Jiménez-Arias, J. L., Torres, E., et al., 2018. Biogeochemical Changes at the Sediment–Water Interface during Redox Transitions in an Acidic Reservoir: Exchange of Protons, Acidity and Electron Donors and Acceptors. Biogeochemistry, 139(3): 241-260. https://doi.org/10.1007/s10533-018-0465-7
      Fenner, N., Freeman, C., 2011. Drought-Induced Carbon Loss in Peatlands. Nature Geoscience, 4(12): 895-900. https://doi.org/10.1038/ngeo1323
      Freeman, C., Ostle, N., Kang, H., 2001. An Enzymic 'Latch' on a Global Carbon Store. Nature, 409: 149. https://doi.org/10.1038/35051650
      Garland, J. L., 1996. Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization. Soil Biology and Biochemistry, 28(2): 213-221. https://doi.org/10.1016/0038-0717(95)00112-3
      Haapalehto, T., Kotiaho, J. S., Matilainen, R., et al., 2014. The Effects of Long-Term Drainage and Subsequent Restoration on Water Table Level and Pore Water Chemistry in Boreal Peatlands. Journal of Hydrology, 519: 1493-1505. https://doi.org/10.1016/j.jhydrol.2014.09.013
      Hribljan, J. A., Kane, E. S., Pypker, T. G., et al., 2014. The Effect of Long-Term Water Table Manipulations on Dissolved Organic Carbon Dynamics in a Poor Fen Peatland. Journal of Geophysical Research: Biogeosciences, 119(4): 577-595. https://doi.org/10.1002/2013jg002527
      Huang, X. Y., Zhang, Z. Q., Wang, H. M., et al., 2017. Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia. Earth Science, 42(6): 1026-1038 (in Chinese with English abstract).
      Järveoja, J., Peichl, M., Maddison, M., et al., 2016. Impact of Water Table Level on Annual Carbon and Greenhouse Gas Balances of a Restored Peat Extraction Area. Biogeosciences, 13(9): 2637-2651. https://doi.org/10.5194/bg-13-2637-2016
      Kloss, S., Zehetner, F., Buecker, J., et al., 2015. Trace Element Biogeochemistry in the Soil-Water-Plant System of a Temperate Agricultural Soil Amended with Different Biochars. Environmental Science and Pollution Research, 22(6): 4513-4526. https://doi.org/10.1007/s11356-014-3685-y
      Kwon, M. J., Haraguchi, A., Kang, H., 2013. Long-Term Water Regime Differentiates Changes in Decomposition and Microbial Properties in Tropical Peat Soils Exposed to the Short-Term Drought. Soil Biology and Biochemistry, 60: 33-44. https://doi.org/10.1016/j.soilbio.2013.01.023
      Liao, H. H., Yu, K., Duan, Y. H., et al., 2019. Profiling Microbial Communities in a Watershed Undergoing Intensive Anthropogenic Activities. The Science of the Total Environment, 647: 1137-1147. https://doi.org/10.1016/j.scitotenv.2018.08.103
      Limpens, J., Berendse, F., Blodau, C., et al., 2008. Peatlands and the Carbon Cycle: From Local Processes to Global Implications-A Synthesis. Biogeosciences, 5(5): 1475-1491. https://doi.org/10.5194/bg-5-1475-2008
      Liu, H. M., An, K. R., Wang, H., et al., 2020. Effects of Fertilization Regimes on the Metabolic Diversity of Microbial Carbon Sources in a Maize Field of Fluvoaquic Soil in North China. Journal of Agro-Environment Science, 39(10): 2336-2344 (in Chinese with English abstract).
      Luo, T., Lun, Z. J., Gu, Y. S., et al., 2015. Plant Community Survey and Ecological Protection of Dajiuhu Wetlands in Shennongjia Area. Wetland Science, 13(2): 153-160 (in Chinese with English abstract).
      Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., et al., 2019. Response of Microbial Communities to Biochar-Amended Soils: a Critical Review. Biochar, 1(1): 3-22. https://doi.org/10.1007/s42773-019-00009-2
      Saunois, M., Stavert, A. R., Poulter, B., et al., 2020. The Global Methane Budget 2000–2017. Earth System Science Data, 12(3): 1561-1623. https://doi.org/10.5194/essd-12-1561-2020
      Si, G. H., Yuan, J. F., Xu, X. Y., et al., 2018. Effects of an Integrated Rice-Crayfish Farming System on Soil Organic Carbon, Enzyme Activity, and Microbial Diversity in Waterlogged Paddy Soil. Acta Ecologica Sinica, 38(1): 29-35. https://doi.org/10.1016/j.chnaes.2018.01.005
      Song, X. C., Wang, H. L., Qin, W. D., et al., 2019. Effects of Stand Type of Artificial Forests on Soil Microbial Functional Diversity. Chinese Journal of Applied Ecology, 30(3): 841-848 (in Chinese with English abstract).
      Tian, W., Wang, H. M., Xiang, X., et al., 2019. Structural Variations of Bacterial Community Driven by Sphagnum Microhabitat Differentiation in a Subalpine Peatland. Frontiers in Microbiology, 10: 1661-1671. https://doi.org/10.3389/fmicb.2019.01661
      Tian, W., Xiang, X., Wang, H. M., 2021. Differential Impacts of Water Table and Temperature on Bacterial Communities in Pore Water from a Subalpine Peatland, Central China. Frontiers in Microbiology, 12: 649981. https://doi.org/10.3389/fmicb.2021.649981
      Treat, C. C., Kleinen, T., Broothaerts, N., et al., 2019. Widespread Global Peatland Establishment and Persistence over the last 130, 000 Y. Proceedings of the National Academy of Sciences of the United States of America, 116(11): 4822-4827. https://doi.org/10.1073/pnas.1813305116
      Ulanowski, T. A., Branfireun, B. A., 2013. Small-Scale Variability in Peatland Pore-Water Biogeochemistry, Hudson Bay Lowland, Canada. The Science of the Total Environment, 454-455: 211-218. https://doi.org/10.1016/j.scitotenv.2013.02.087
      Urbanová, Z., Bárta, J., 2016. Effects of Long-Term Drainage on Microbial Community Composition Vary between Peatland Types. Soil Biology and Biochemistry, 92: 16-26. https://doi.org/10.1016/j.soilbio.2015.09.017
      Wang, D. X., Zhang, Y. M., Wang, R. C., et al., 2018. Characteristics of Dissolved Organic Matter in Pore Water from the Dajiuhu Peatland, Central China. Resources and Environment in the Yangtze Basin, 27(11): 2568-2577 (in Chinese with English abstract).
      Wang, R. C., Wang, H. M., Xi, Z. Q., et al., 2022. Hydrology Driven Vertical Distribution of Prokaryotes and Methane Functional Groups in a Subtropical Peatland. Journal of Hydrology, 608: 127592. https://doi.org/10.1016/j.jhydrol.2022.127592
      Wang, R. C., Wang, H. M., Xiang, X., et al., 2018. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969-976. https://doi.org/10.1007/s12583-017-0818-5
      Wang, X., He, S. W., Pan, J. Z., et al., 2021. Effects of Aquatic Plant Restoration on Water Quality and Microbial Functional Diversity of Wanshan Lake. Journal of Ecology and Rural Environment, 37(10): 1352-1360 (in Chinese with English abstract).
      Xu, J. R., Morris, P. J., Liu, J. G., et al., 2018. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. CATENA, 160: 134-140. https://doi.org/10.1016/j.catena.2017.09.010
      Xue, D., Chen, H., Zhan, W., et al., 2021. How do Water Table Drawdown, Duration of Drainage, and Warming Influence Greenhouse Gas Emissions from Drained Peatlands of the Zoige Plateau? Land Degradation & Development, 32(11): 3351-3364. https://doi.org/10.1002/ldr.4013
      Yuan, M. M., Guo, X., Wu, L. W., et al., 2021. Climate Warming Enhances Microbial Network Complexity and Stability. Nature Climate Change, 11: 343–348. https://doi.org/10.1038/s41558-021-00989-9
      Yun, Y., Cheng, X. Y., Wang, W. Q., et al., 2018. Seasonal Variation of Bacterial Community and Their Functional Diversity in Drip Water from a Karst Cave. Chinese Science Bulletin, 63(36): 3932-3944 (in Chinese). doi: 10.1360/N972018-00627
      Zhang, W. X., Furtado, K., Wu, P. L., et al., 2021. Increasing Precipitation Variability on Daily-to-Multiyear Time Scales in a Warmer World. Science Advances, 7(31): eabf8021. https://doi.org/10.1126/sciadv.abf8021
      Zhang, Y. M., Naafs, B. D. A., Huang, X. Y., et al., 2022. Variations in Wetland Hydrology Drive Rapid Changes in the Microbial Community, Carbon Metabolic Activity, and Greenhouse Gas Fluxes. Geochimica et Cosmochimica Acta, 317: 269-285. https://doi.org/10.1016/j.gca.2021.11.014
      Zhang, Z. Q., Zhang, Y. M., Huang, X. Y., et al., 2021. Seasonal Variations and Influencing Factors of Dissolved Organic Carbon in Pore Water from the Dajiuhu Peatland in Shennongjia. Bulletin of Geological Science and Technology, 40(2): 147-155 (in Chinese with English abstract).
      Zhong, Q. P., Chen, H., Liu, L. F., et al., 2017. Water Table Drawdown Shapes the Depth-Dependent Variations in Prokaryotic Diversity and Structure in Zoige Peatlands. FEMS Microbiology Ecology, 93(6): fix049. https://doi.org/10.1093/femsec/fix049
      Zhou, G. X., Qiu, X. W., Chen, L., et al., 2019. Succession of Organics Metabolic Function of Bacterial Community in Response to Addition of Earthworm Casts and Zeolite in Maize Straw Composting. Bioresource Technology, 280: 229-238. https://doi.org/10.1016/j.biortech.2019.02.015
      陈槐, 吴宁, 王艳芬, 等, 2021. 泥炭沼泽湿地研究的若干基本问题与研究简史. 中国科学(D辑), 51(1): 15-26.
      黄咸雨, 张志麒, 王红梅, 等, 2017. 神农架大九湖泥炭湿地关键带监测进展. 地球科学, 42(6): 1026-1038. doi: 10.3799/dqkx.2017.081
      刘红梅, 安克锐, 王慧, 等, 2020. 不同施肥措施对华北潮土区玉米田土壤微生物碳源代谢多样性的影响. 农业环境科学学报, 39(10): 2336-2344.
      罗涛, 伦子健, 顾延生, 等, 2015. 神农架大九湖湿地植物群落调查与生态保护研究. 湿地科学, 13(2): 153-160.
      宋贤冲, 王会利, 秦文弟, 等, 2019. 退化人工林不同恢复类型对土壤微生物群落功能多样性的影响. 应用生态学报, 30(3): 841-848.
      王东香, 张一鸣, 王锐诚, 等, 2018. 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素. 长江流域资源与环境, 27(11): 2568-2577.
      汪欣, 何尚卫, 潘继征, 等, 2021. 水生植物恢复对宛山荡水质及水体微生物代谢功能多样性的影响. 生态与农村环境学报, 37(10): 1352-1360.
      云媛, 程晓钰, 王纬琦, 等, 2018. 喀斯特洞穴滴水细菌群落组成及其代谢功能的季节性变化. 科学通报, 63(36): 3932-3944.
      张志麒, 张一鸣, 黄咸雨, 等, 2021. 神农架大九湖泥炭地溶解有机碳季节性变化及其影响因素. 地质科技通报, 40(2): 147-155.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(5)

      Article views (263) PDF downloads(23) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return