Citation: | Zheng Defeng, Gao Min, Yan Chenglin, Li Yuanyuan, Nian Tingkai, 2024. Susceptibility Assessment of Landslides Based on Convolutional Neural Network Model: A Case Study from Xianrendong National Nature Reserve in Southern Liaoning Province. Earth Science, 49(5): 1654-1664. doi: 10.3799/dqkx.2023.113 |
Althuwaynee, O. F., Pradhan, B., Lee, S., 2016. A Novel Integrated Model for Assessing Landslide Susceptibility Mapping Using CHAID and AHP Pair-Wise Comparison. International Journal of Remote Sensing, 37(5): 1190-1209. https://doi.org/10.1080/01431161.2016.1148282
|
Aslam, B., Zafar, A., Khalil, U., 2021. Development of Integrated Deep Learning and Machine Learning Algorithm for the Assessment of Landslide Hazard Potential. Soft Computing, 25(21): 13493-13512. https://doi.org/10.1007/s00500-021-06105-5
|
Blahut, J., van Westen, C. J., Sterlacchini, S., 2010. Analysis of Landslide Inventories for Accurate Prediction of Debris-Flow Source Areas. Geomorphology, 119(1-2): 36-51. https://doi.org/10.1016/j.geomorph.2010.02.017
|
Chauhan, S., Sharma, M., Arora, M. K., et al., 2010. Landslide Susceptibility Zonation through Ratings Derived from Artificial Neural Network. International Journal of Applied Earth Observation and Geoinformation, 12(5): 340-350. https://doi.org/10.1016/j.jag.2010.04.006
|
Chen, W., Li, W. P., Hou, E. K., et al., 2014. Landslide Susceptibility Mapping Based on GIS and Information Value Model for the Chencang District of Baoji, China. Arabian Journal of Geosciences, 7(11): 4499-4511. https://doi.org/10.1007/s12517-014-1369-z
|
Fang, Z. C., Wang, Y., Peng, L., et al., 2020. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Computers & Geosciences, 139: 104470. https://doi.org/10.1016/j.cageo.2020.104470
|
Geertsema, M., Pojar, J. J., 2007. Influence of Landslides on Biophysical Diversity—A Perspective from British Columbia. Geomorphology, 89(1-2): 55-69. https://doi.org/10.1016/j.geomorph.2006.07.019
|
Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 1440-1448.
|
Habumugisha, J. M., Chen, N. S., Rahman, M., et al., 2022. Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability, 14(3): 1734. https://doi.org/10.3390/su14031734
|
Hansen, A., Franks, C. A. M., Kirk, P. A., et al., 1995. Application of GIS to Hazard Assessment, with Particular Reference to Landslides in Hong Kong. Geographical Information Systems in Assessing Natural Hazards. Springer, Dordrecht, 273-298. https://doi.org/10.1007/978-94-015-8404-3_14
|
Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
|
Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
|
Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
|
Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
|
Ilmy, H. F., Darminto, M. R., Widodo, A., 2021. Application of Machine Learning on Google Earth Engine to Produce Landslide Susceptibility Mapping (Case Study: Pacitan). IOP Conference Series: Earth and Environmental Science, 731(1): 012028. https://doi.org/10.1088/1755-1315/731/1/012028
|
Li, W. B., Fan, X. M., Huang, F. M., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
|
Li, W. J., Fang, Z. C., Wang, Y., 2022. Stacking Ensemble of Deep Learning Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoirarea, China. Stochastic Environmental Research and Risk Assessment, 36(8): 2207-2228. https://doi.org/10.1007/s00477-021-02032-x
|
Liu, Y., 2022. Research on Pre Loan Risk Control Based on Stacking Integration Method under Unbalanced Samples (Dissertation). Central China Normal University, Wuhan (in Chinese with English abstract).
|
Meten, M., Bhandary, N. P., Yatabe, R., 2015. GIS-Based Frequency Ratio and Logistic Regression Modelling for Landslide Susceptibility Mapping of Debre Sina Area in Central Ethiopia. Journal of Mountain Science, 12(6): 1355-1372. https://doi.org/10.1007/s11629-015-3464-3
|
Moni, M., Sethi, I. P. S., Sethi, S. P. S., 1991. Natural Calamities Relief Management Software. IETE Technical Review, 8(2): 64-71. https://doi.org/10.1080/02564602.1991.11438716
|
Nian, T. K., Feng, Z. K., Yu, P. C., et al., 2013. Strength Behavior of Slip-Zone Soils of Landslide Subject to the Change of Water Content. Natural Hazards, 68(2): 711-721. https://doi.org/10.1007/s11069-013-0647-5
|
Pardeshi, S. D., Autade, S. E., Pardeshi, S. S., 2013. Landslide Hazard Assessment: Recent Trends and Techniques. Springer Plus, 2(1): 523. https://doi.org/10.1186/2193-1801-2-523
|
Pei, Z. W., Nian, T. K., Wu, H., et al., 2021. Research Progress on Emergency Treatment Techniques for Landslide Geological Hazards. Journal of Disaster Prevention and Mitigation Engineering, 41(6): 1382-1394 (in Chinese with English abstract).
|
Pham, V. D., Nguyen, Q. H., Nguyen, H. D., et al., 2020. Convolutional Neural Network-Optimized Moth Flame Algorithm for Shallow Landslide Susceptible Analysis. IEEE Access, 8: 32727-32736. https://doi.org/10.1109/ACCESS.2020.2973415
|
Wang, C. Y., 2008. Study on the Relationship between Aspect and Slope Stability (Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).
|
Wang, W. D., He, Z. L., Han, Z., et al., 2020. Mapping the Susceptibility to Landslides Based on the Deep Belief Network: A Case Study in Sichuan Province, China. Natural Hazards, 103(3): 3239-3261. https://doi.org/10.1007/s11069-020-04128-z
|
Wang, Y., Fang, Z. C., Niu, R. Q., et al., 2021. Landslide Susceptibility Analysis Based on Deep Learning. Journal of Geo-Information Science, 23(12): 2244-2260 (in Chinese with English abstract).
|
Wu, C., 2019. Landslide Susceptibility Based on Extreme Rainfall-Induced Landslide Inventories and the Following Landslide Evolution. Water, 11(12): 2609. https://doi.org/10.3390/w11122609
|
Wu, X. L., Yang, J. Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232 (in Chinese with English abstract).
|
Yan, C. L., Zheng, D. F., Nian, T. K., et al., 2021. Fuzzy Bayesian Network Model Based on ANP and Its Application to Coastal Zone Geohazard Risk Assessment. Journal of Engineering Geology, 29(6): 1862-1868 (in Chinese with English abstract).
|
Zhang, C. X., Yang, Q. K., Li, R., 2005. Advancement in Topographic Wetness Index and Its Application. Progress In Geography, 24(6): 116-123 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6301.2005.06.014
|
Zhang, K. X., Wu, X. L., Niu, R. Q., et al., 2017. The Assessment of Landslide Susceptibility Mapping Using Random Forest and Decision Tree Methods in the Three Gorges Reservoir Area, China. Environmental Earth Sciences, 76(11): 405. https://doi.org/10.1007/s12665-017-6731-5
|
Zhao, P. X., Masoumi, Z., Kalantari, M., et al., 2022. A GIS-Based Landslide Susceptibility Mapping and Variable Importance Analysis Using Artificial Intelligent Training-Based Methods. Remote Sensing, 14(1): 211. https://doi.org/10.3390/rs14010211
|
Zhou, X. T., Huang, F. M., Wu, W. C., et al., 2022. Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Advanced Engineering Sciences, 54(3): 25-35 (in Chinese with English abstract).
|
黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247
|
黄发明, 陈佳武, 唐志鹏, 等, 2021. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
|
黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
|
黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
|
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
|
刘允, 2022. 基于不平衡样本下Stacking集成方法的贷前风控研究(硕士学位论文). 武汉: 华中师范大学.
|
裴振伟, 年廷凯, 吴昊, 等, 2021. 滑坡地质灾害应急处置技术研究进展. 防灾减灾工程学报, 41(6): 1382-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202106028.htm
|
王朝阳, 2008. 坡向与斜坡稳定性的关系研究(硕士学位论文). 昆明: 昆明理工大学.
|
王毅, 方志策, 牛瑞卿, 等, 2021. 基于深度学习的滑坡灾害易发性分析. 地球信息科学学报, 23(12): 2244-2260. doi: 10.12082/dqxxkx.2021.210057
|
武雪玲, 杨经宇, 牛瑞卿, 2020. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法. 武汉大学学报(信息科学版), 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
|
闫成林, 郑德凤, 年廷凯, 等, 2021. 基于ANP的模糊贝叶斯网络模型及其在海岸带地质灾害风险评价中的应用. 工程地质学报, 29(6): 1862-1868. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106021.htm
|
张彩霞, 杨勤科, 李锐, 2005. 基于DEM的地形湿度指数及其应用研究进展. 地理科学进展, 24(6): 116-123. doi: 10.3969/j.issn.1007-6301.2005.06.014
|
周晓亭, 黄发明, 吴伟成, 等, 2022. 基于耦合信息量法选择负样本的区域滑坡易发性预测. 工程科学与技术, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm
|