Citation: | Ye Kaiyun, Zhao Kun, Tong Xia, Li Songzhuo, Lang Xianguo, 2024. Reconstruction of Deep-Water Nitrogen Cycle during the Late Ediacaran in South China. Earth Science, 49(9): 3212-3227. doi: 10.3799/dqkx.2023.116 |
Ader, M., Thomazo, C., Sansjofre, P., et al., 2016. Interpretation of the Nitrogen Isotopic Composition of Precambrian Sedimentary Rocks: Assumptions and Perspectives. Chemical Geology, 429: 93-110. https://doi.org/10.1016/j.chemgeo.2016.02.010
|
Algeo, T. J., Meyers, P. A., Robinson, R. S., et al., 2014. Icehouse⁃Greenhouse Variations in Marine Denitrification. Biogeosciences, 11(4): 1273-1295. https://doi.org/10.5194/bg⁃11⁃1273⁃2014
|
Bhattacharya, S., Dutta, S., 2015. Neoproterozoic⁃Early Cambrian Biota and Ancient Niche: A Synthesis from Molecular Markers and Palynomorphs from Bikaner⁃Nagaur Basin, Western India. Precambrian Research, 266: 361-374. https://doi.org/10.1016/j.precamres.2015.05.029
|
Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., et al., 2017. The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548(7669): 578-581. https://doi.org/10.1038/nature23457
|
Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep⁃Water Chemistry. Science, 321(5891): 949-952. https://doi.org/10.1126/science.1154499
|
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2010a. The Major and REE Geochemistry of the Silikou Chert in Northern Guangxi Province. Acta Sedimentologica Sinica, 28(6): 1098-1107 (in Chinese with English abstract).
|
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep⁃Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322: 80-87.
|
Chang, H. J., Chu, X., Feng, L. J., et al., 2010b. Iron Speciation in Cherts from the Laobao Formation, South China: Implications for Anoxic and Ferruginous Deep⁃Water Conditions. Chinese Science Bulletin, 55(20): 2010-2017 (in Chinese). doi: 10.1360/csb2010-55-20-2010
|
Charvet, J., 2013. The Neoproterozoic⁃Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015
|
Chen, Y., Diamond, C. W., Stüeken, E. E., et al., 2019. Coupled Evolution of Nitrogen Cycling and Redoxcline Dynamics on the Yangtze Block across the Ediacaran⁃Cambrian Transition. Geochimica et Cosmochimica Acta, 257: 243-265. https://doi.org/10.1016/j.gca.2019.05.017
|
Cremonese, L., Shields⁃Zhou, G., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165. https://doi.org/10.1016/j.precamres.2011.12.004
|
Dong, L., Shen, B., Lee, C. A., et al., 2015. Germanium/Silicon of the Ediacaran⁃Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751-763.
|
Du, Y., Song, H. Y., Grasby, S. E., et al., 2023. Recovery from Persistent Nutrient⁃N Limitation Following the Permian⁃Triassic Mass Extinction. Earth and Planetary Science Letters, 602: 117944. https://doi.org/10.1016/j.epsl.2022.117944
|
Fu, Y., Wang, F. L., Guo, C., et al., 2022. Re⁃Os Geochronology of the Liuchapo Formation across the Ediacaran⁃Cambrian Boundary of the Yangtze Block (South China). Journal of Earth Science, 33(1): 25-35. https://doi.org/10.1007/s12583⁃021⁃1473⁃4
|
Gao, P., Li, S. J., Lash, G. G., et al., 2020. Silicification and Si Cycling in a Silica⁃Rich Ocean during the Ediacaran⁃Cambrian Transition. Chemical Geology, 552: 119787. https://doi.org/10.1016/j.chemgeo.2020.119787
|
Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest⁃Known Carbon Isotope Excursion in Earth's History. Nature Geoscience, 4(5): 285-292. https://doi.org/10.1038/ngeo1138
|
Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran⁃Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216.
|
Hu, J., 2008. The Cherty Microbolite in the Deeper Water Facies during the Precambrian⁃Cambrian Transitional Period in Northeast Guangxi Province, China. Acta Micropalaeontologica Sinica, 25(3): 291-305 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0674.2008.03.008
|
Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006
|
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369
|
Mingram, B., Hoth, P., Lüders, V., et al., 2005. The Significance of Fixed Ammonium in Palaeozoic Sediments for the Generation of Nitrogen⁃Rich Natural Gases in the North German Basin. International Journal of Earth Sciences, 94(5): 1010-1022. https://doi.org/10.1007/s00531⁃005⁃0015⁃0
|
Narbonne, G. M., 2005. The Ediacara Biota: Neoproterozoic Origin of Animals and Their Ecosystems. Annual Review of Earth and Planetary Sciences, 33(1): 421-442. https://doi.org/10.1146/annurev.earth.33.092203.122519
|
Och, L. M., Shields⁃Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth⁃Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
|
Sigman, D. M., Casciotti, K. L., 2009. Nitrogen Isotopes in the Ocean. In: Steele, J. H., ed., Encyclopedia of Ocean Sciences. Elsevier/Academic Press, London, 1884-1894.
|
Song, H. Y., An, Z. H., Ye, Q., et al., 2023. Mid⁃Latitudinal Habitable Environment for Marine Eukaryotes during the Waning Stage of the Marinoan Snowball Glaciation. Nature Communications, 14(1): 1564. https://doi.org/10.1038/s41467⁃023⁃37172⁃x
|
Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523(7561): 451-454. https://doi.org/10.1038/nature14589
|
Stüeken, E. E., Kipp, M. A., Koehler, M. C., et al., 2016. The Evolution of Earth's Biogeochemical Nitrogen Cycle. Earth⁃Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007
|
Tian, L., Song, H. Y., Ye, Q., et al., 2020. Recurrent Anoxia Recorded in Shallow Marine Facies at Zhangcunping (Western Hubei, China) Throughout the Ediacaran to Earliest Cambrian. Precambrian Research, 340: 105617. https://doi.org/10.1016/j.precamres.2020.105617
|
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
|
Wang, D., Ling, H. F., Struck, U., et al., 2018a. Coupling of Ocean Redox and Animal Evolution during the Ediacaran⁃Cambrian Transition. Nature Communications, 9: 2575. https://doi.org/10.1038/s41467⁃018⁃04980⁃5
|
Wang, D., Struck, U., Ling, H. F., et al., 2015. Marine Redox Variations and Nitrogen Cycle of the Early Cambrian Southern Margin of the Yangtze Platform, South China: Evidence from Nitrogen and Organic Carbon Isotopes. Precambrian Research, 267: 209-226. https://doi.org/10.1016/j.precamres.2015.06.009
|
Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran⁃Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306-307: 129-138. https://doi.org/10.1016/j.chemgeo.2012.03.005
|
Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break⁃up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/s0301⁃9268(02)00209⁃7
|
Wang, X. Q., Jiang, G. Q., Shi, X. Y., et al., 2018b. Nitrogen Isotope Constraints on the Early Ediacaran Ocean Redox Structure. Geochimica et Cosmochimica Acta, 240: 220-235. https://doi.org/10.1016/j.gca.2018.08.034
|
Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2014. Organic Carbon Isotope Gradient and Ocean Stratification across the Late Ediacaran⁃Early Cambrian Yangtze Platform. Science in China (Series D), 44(6): 1142-1160 (in Chinese).
|
Xue, J. Z., Wang, J. S., Li, B. X., et al., 2022. Origin and Early Evolution of Land Plants and the Effects on Earth's Environments. Earth Science, 47(10): 3648-3664 (in Chinese with English abstract).
|
Zhang, F. F., Xiao, S. H., Kendall, B., et al., 2018. Extensive Marine Anoxia during the Terminal Ediacaran Period. Science Advances, 4(6): eaan8983. https://doi.org/10.1126/sciadv.aan8983
|
Zhou, M. Z., Luo, T. Y., Liu, S. R., et al., 2013. SHRIMP Zircon Age for a K⁃Bentonite in the Top of the Laobao Formation at the Pingyin Section, Guizhou, South China. Science in China (Series D), 43(7): 1195-1206 (in Chinese).
|
Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49(3): 269-287 (in Chinese with English abstract).
|
Zhu, Y. Y., Sun, T. Y., Xing, T., et al., 2022. Reconstruction of Atmospheric Nitrogen Deposition and Nitrogen Source in Wuhan by the Nitrogen Contents and Isotopic Composition of Camphor Leaves. Earth Science, 47(3): 1136-1142 (in Chinese with English abstract).
|
常华进, 储雪蕾, 冯连君, 等, 2010a. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示. 沉积学报, 28(6): 1098-1107.
|
常华进, 储雪蕾, 冯连君, 等, 2010b. 桂北老堡组硅岩中的铁组分: 指示缺氧含铁的盆地深水古环境. 科学通报, 55(20): 2010-2017.
|
胡杰, 2008. 桂东北较深水相前寒武纪‒寒武纪之交的硅质微生物岩. 微体古生物学报, 25(3): 291-305. doi: 10.3969/j.issn.1000-0674.2008.03.008
|
王新强, 史晓颖, Jiang, G. Q., 等, 2014. 华南埃迪卡拉纪‒寒武纪过渡期的有机碳同位素梯度和海洋分层. 中国科学(D辑), 44(6): 1142-1160.
|
薛进庄, 王嘉树, 李炳鑫, 等, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648-3664. doi: 10.3799/dqkx.2022.332
|
周明忠, 罗泰义, 刘世荣, 等, 2013. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义. 中国科学(D辑), 43(7): 1195-1206.
|
朱茂炎, 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49(3): 269-287.
|
朱园园, 孙庭玉, 邢腾, 等, 2022. 利用樟树叶片氮含量和同位素组成初探武汉市大气氮沉降和氮源. 地球科学, 47(3): 1136-1142. doi: 10.3799/dqkx.2021.220
|