• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Si Xueqiang, Pang Zhichao, Guo Huajun, Peng Bo, Ji Dongsheng, Chen Xiguang, Wang Xinqiang, Li Yazhe, 2024. Characteristics and Controlling Factors of High Quality Deep Conglomerate Reservoir: A Case from Lower Cretaceous Qingshuihe Formation of Gaoquan Structure Zone in Sikeshu Sag, Junggar Basin. Earth Science, 49(10): 3576-3588. doi: 10.3799/dqkx.2023.122
    Citation: Si Xueqiang, Pang Zhichao, Guo Huajun, Peng Bo, Ji Dongsheng, Chen Xiguang, Wang Xinqiang, Li Yazhe, 2024. Characteristics and Controlling Factors of High Quality Deep Conglomerate Reservoir: A Case from Lower Cretaceous Qingshuihe Formation of Gaoquan Structure Zone in Sikeshu Sag, Junggar Basin. Earth Science, 49(10): 3576-3588. doi: 10.3799/dqkx.2023.122

    Characteristics and Controlling Factors of High Quality Deep Conglomerate Reservoir: A Case from Lower Cretaceous Qingshuihe Formation of Gaoquan Structure Zone in Sikeshu Sag, Junggar Basin

    doi: 10.3799/dqkx.2023.122
    • Received Date: 2023-03-20
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • High-production oil flow was obtained from Lower Cretaceous Qingshuihe Formation in Well Gaotan-1, which is located in the southern margin of Junggar Basin. The result proves that high-quality conglomerate reservoirs are developed in Qingshuihe Formation. In this paper it analyzes the rock minerals, physical properties, pore structure and diagenesis of the conglomerate of Qingshuihe Formation in Gaoquan structure zone, Sikeshu sag, by using cores and thin section data, porosity-permeability analysis and X-ray diffraction whole rock mineral analysis. The main controlling factors of high-quality conglomerate reseroirs were analyzed based on the result. The studies show that the tuffaceous gravels are the major content of the reservoir. The content of sandy grains is typically less than 50%. Based on the contact relationship of the gravels and the content of sandy grains, the conglomerate can be divided into grain supported conglomerate and matrix supported conglomerate. The reservoir space is strong in heterogeneity, which is dominated by primary pores. The development of reservoir space is affected by a variety of diagenesis, among which physical compaction is the major contributor to the porosity loss. The conglomerate reservoir has undergone the burial process of early long-term shallow burial and late rapid deep burial, and is currently in the mesogenesis stage A. The forming of high-quality conglomerate reservoir derives from the following controlling factors. Conglomerate from underwater distributary channels in fan-delta front is the foundation to form high-quality reservoir. Low geothermal gradient and the the burial process of early long-term shallow burial and late rapid deep burial are key contributors to the formation of the reservoir. The alkaline diagenetic environment in the early stage of diagenesis and later acid diagenetic environment, as well as the overpressure are also important to the formation of the reservoir.

       

    • loading
    • Boggs, S., 2006. Principles of Sedimentology and Stratigraphy (Forth Edition). Prentice Hall, New Jersey.
      Bowers, G. L., 1995. Pore Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms besides Undercompaction. SPE Drilling & Completion, 10(2): 89-95. https://doi.org/10.2118/27488-pa
      Chen, S. H., Peng, G. R., Zhang, L., et al., 2022. Quantitative Prediction of Permeability of High Variable Geothermal Gradient Sandstone in Baiyun Deep Water Area of Northern South China Sea. Earth Science, 47(7): 2468-2480(in Chinese with English abstract).
      Dyman, T. S., Crovelli, R. A., Bartberger, C. E., et al., 2002. Worldwide Estimates of Deep Natural Gas Resources Based on the U. S. Geological Survey World Petroleum Assessment 2000. Natural Resources Research, 11(3): 207-218. https://doi.org/10.1023/A: 1019860722244 doi: 10.1023/A:1019860722244
      Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600(in Chinese with English abstract).
      Guo, Z. J., Deng, S. T., Wei, G. Q., et al., 2007. Comparative Study of the Foreland Thrust Belts of South and North Tianshan and Implications for Hydrocarbon Accumulation. Earth Science Frontiers, 14(4): 123-131(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2007.04.013
      Han, S. H., Li, X. J., Chen, N. G., et al., 2012. Hydrocarbon Reservoirs and Their Controlling Factors in the Lower Associations of the Middle Part of Southern Junggar Basin, Xinjiang. Sedimentary Geology and Tethyan Geology, 32(4): 52-58(in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2012.04.008
      He, D. F., Ma, Y. S., Liu, B., et al., 2019. Main Advances and Key Issues for Deep-Seated Exploration in Petroliferous Basins in China. Earth Science Frontiers, 26(1): 1-12(in Chinese with English abstract).
      Jia, C. Z., Pang, X. Q., 2015. Research Processes and Main Development Directions of Deep Hydrocarbon Geological Theories. Acta Petrolei Sinica, 36(12): 1457-1469(in Chinese with English abstract). doi: 10.7623/syxb201512001
      Lei, D. W., Chen, N. G., Li, X. Y., et al., 2012. The Major Reservoirs and Distribution of Lower Combination in Southern Margin of Jungar Basin. Xinjiang Petroleum Geology, 33(6): 648-650(in Chinese with English abstract).
      Lei, D. W., Tang, Y., Chang, Q. S., 2008. The Deep and Relatively High-Quality Clastic Reservoir Bodies and Favorable Exploration Areas in Southern Margin of Junggar Basin. Xinjiang Petroleum Geology, 29(4): 435-438(in Chinese with English abstract).
      Li, B. L., Chen, Z. X., Lei, Y. L., et al., 2011. Structural Geology Correlation of Foreland Thrust-Folded Belts between the Southern and Northern Edges of the Tianshan Mountain and Some Suggestions for Hydrocarbon Exploration. Acta Petrolei Sinica, 32(3): 395-403(in Chinese with English abstract).
      Li, T. J., 2004. Overpressure and Its Generation in South Edge of the Junggar Basin. Chinese Journal of Geology, 39(2): 234-244(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2004.02.010
      Li, Y., Xue, Z. J., Cheng, Z., et al., 2020. Progress and Development Directions of Deep Oil and Gas Exploration and Development in China. China Petroleum Exploration, 25(1): 45-57(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.01.005
      Lin, T., Li, W. H., Sun, P., et al., 2013. Factors Influencing Deep Favorable Reservoirs on the Southern Margin of Junggar Basin, Xinjiang Province. Geological Bulletin of China, 32(9): 1461-1470(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2013.09.016
      Luo, J. L., He, M., Pang, X., et al., 2019. Diagenetic Response of Thermal Evolution Events and High Geothermal Gradient in Southern Pearl River Mouth Basin and Its Enlightenment to Oil and Gas Exploration. Acta Petrolei Sinica, 40(S1): 90-104(in Chinese with English abstract). doi: 10.7623/syxb2019S1008
      Qiu, N. S., Yang, H. B., Wang, X. L., 2002. Tectono-Thermal Evolution in the Junggar Basin. Scientia Geologica Sinica, 37(4): 423-429(in Chinese with English abstract).
      Shou, J. F., Zhang, H. L., Shen, Y., et al., 2006. Diagenetic Mechanisms of Sandstone Reservoirs in China Oil and Gas-Bearing Basins. Acta Petrologica Sinica, 22(8): 2165-2170(in Chinese with English abstract).
      Si, X. Q., Cao, Q. B., Ji, W. H., et al., 2014. Characteristics and Influence Factors of Tight Sandstone Reservoirs of Shuixigou Group in Taibei Sag, Turpan-Hami Basin. Journal of Mineralogy and Petrology, 34(4): 93-101(in Chinese with English abstract).
      Si, X. Q., Yuan, B., Guo, H. J., et al., 2020. Reservoir Characteristics and Main Controlling Factors of Cretaceous Qingshuihe Formation in the Southern Margin of Junggar Basin. Xinjiang Petroleum Geology, 41(1): 38-45(in Chinese with English abstract).
      Wang, J., Zhou, L., Liu, J., et al., 2020. Acid-Base Alternation Diagenesis and Its Influence on Shale Reservoirs in the Permian Lucaogou Formation, Jimusar Sag, Junggar Basin, NW China. Petroleum Exploration and Development, 47(5): 898-912(in Chinese with English abstract).
      Wang, K., Zhang, H. L., Zhang, R. H., et al., 2016. Characteristics and Influencing Factors of Ultra-Deep Tight Sandstone Reservoir Structural Fracture: A Case Study of Keshen-2 Gas Field, Tarim Basin. Acta Petrolei Sinica, 37(6): 715-727, 742(in Chinese with English abstract).
      Wang, X., Si, C. S., Zhu, G. H., et al., 2004. Diagenetic Patterns of Jurassic-Cretaceous Coal Measure and Non-Coal Measure Reservoirs and Porous Quantitative Prediction in Junggar Basin. China Petrleum Exploration, 9(5): 45-52, 2-3(in Chinese with English abstract).
      Wang, Y. R., Xu, G. S., Liu, Y., et al., 2020. Diagenetic Environment and Pore Evolution of Huagang Formation Compact Sandstone Reservoir in the Western Sub-Depression of Xihu Depression, East China Sea. Journal of Chengdu University of Technology (Science & Technology Edition), 47(1): 35-49(in Chinese with English abstract).
      Xu, G. S., Kuang, J. C., Li, J. L., et al., 2000. Research on the Genesis of Abnormal High Pressure in the Foreland Basin to the North of Tianshan. Journal of Chengdu University of Technology, 27(3): 255-262(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2000.03.008
      Ye, Y., Shen, Z. Y., Zheng, L. B., et al., 2000. Authigenic Mineral Assemblage and Two Types of Diagenetic Ambient Found in the Meso-Cainozoic Reservoir Sandstones in Tarim Basin. Journal of Zhejiang University (Sciences Edition), 27(3): 307-314(in Chinese with English abstract).
      Zhang, H. L., Zhang, R. H., Yang, H. J., et al., 2014. Characterization and Evaluation of Ultra-Deep Fracture-Pore Tight Sandstone Reservoirs: A Case Study of Cretaceous Bashijiqike Formation in Kelasu Tectonic Zone in Kuqa Foreland Basin, Tarim, NW China. Petroleum Exploration and Development, 41(2): 158-167(in Chinese with English abstract).
      Zhao, G. P., 2011. Comparison and Evaluation of Hydrocarbon Accumulation Conditions between the Southern and Northern Tien Shan Thrust-Fold Belts. Oil & Gas Geology, 32(6): 903-908(in Chinese with English abstract).
      Zhong, D. K., Zhu, X. M., Wang, H. J., 2008. Characteristics and Formation Mechanism of Deep High-Quality Clastic Reservoir in China. Science China Earth Science, 38(S1): 11-18(in Chinese).
      Zhu, M., Yuan, B., Liang, Z. L., et al., 2021. Fault Properties and Evolution in the Periphery of Junggar Basin. Acta Petrolei Sinica, 42(9): 1163-1173(in Chinese with English abstract).
      陈淑慧, 彭光荣, 张丽, 等, 2022. 南海北部白云深水区高变地温梯度砂岩渗透率定量预测. 地球科学, 47(7): 2468-2480. doi: 10.3799/dqkx.2022.239
      宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
      郭召杰, 邓松涛, 魏国齐, 等, 2007. 天山南北缘前陆冲断构造对比研究及其油气藏形成的构造控制因素分析. 地学前缘, 14(4): 123-131.
      韩守华, 李娴静, 陈能贵, 等, 2012. 准噶尔盆地南缘中段下组合储层特征及控制因素分析. 沉积与特提斯地质, 32(4): 52-58.
      何登发, 马永生, 刘波, 等, 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1-12.
      贾承造, 庞雄奇, 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457-1469.
      雷德文, 陈能贵, 李学义, 等, 2012. 准噶尔盆地南缘下部成藏组合储集层及分布特征. 新疆石油地质, 33(6): 648-650.
      雷德文, 唐勇, 常秋生, 2008. 准噶尔盆地南缘深部优质储集层及有利勘探领域. 新疆石油地质, 29(4): 435-438.
      李本亮, 陈竹新, 雷永良, 等, 2011. 天山南缘与北缘前陆冲断带构造地质特征对比及油气勘探建议. 石油学报, 32(3): 395-403.
      李铁军, 2004. 准噶尔盆地南缘异常高压及其成因机制初探. 地质科学, 39(2): 234-244.
      李阳, 薛兆杰, 程喆, 等, 2020. 中国深层油气勘探开发进展与发展方向. 中国石油勘探, 25(1): 45-57.
      林潼, 李文厚, 孙平, 等, 2013. 新疆准噶尔盆地南缘深层有利储层发育的影响因素. 地质通报, 32(9): 1461-1470.
      罗静兰, 何敏, 庞雄, 等, 2019. 珠江口盆地南部热演化事件与高地温梯度的成岩响应及其对油气勘探的启示. 石油学报, 40(S1): 90-104.
      邱楠生, 杨海波, 王绪龙, 2002. 准噶尔盆地构造-热演化特征. 地质科学, 37(4): 423-429.
      寿建峰, 张惠良, 沈扬, 等, 2006. 中国油气盆地砂岩储层的成岩压实机制分析. 岩石学报, 22(8): 2165-2170.
      司学强, 曹全斌, 季卫华, 等, 2014. 吐哈盆地台北凹陷水西沟群致密砂岩储层特征及影响因素分析. 矿物岩石, 34(4): 93-101.
      司学强, 袁波, 郭华军, 等, 2020. 准噶尔盆地南缘清水河组储集层特征及其主控因素. 新疆石油地质, 41(1): 38-45.
      王剑, 周路, 刘金, 等, 2020. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组酸碱交替成岩作用特征及对页岩储集层的影响. 石油勘探与开发, 47(5): 898-912.
      王珂, 张惠良, 张荣虎, 等, 2016. 超深层致密砂岩储层构造裂缝特征及影响因素: 以塔里木盆地克深2气田为例. 石油学报, 37(6): 715-727, 742.
      王鑫, 斯春松, 朱国华, 等, 2004. 准噶尔盆地侏罗-白垩系煤系与非煤系储层成因模式与孔隙定量预测. 中国石油勘探, 9(5): 45-52, 2-3.
      王亦然, 徐国盛, 刘勇, 等, 2020. 西湖凹陷西次凹花港组致密砂岩储层成岩环境与孔隙演化. 成都理工大学学报(自然科学版), 47(1): 35-49.
      徐国盛, 匡建超, 李建林, 等, 2000. 天山北侧前陆盆地异常高压成因研究. 成都理工学院学报, 27(3): 255-262.
      叶瑛, 沈忠悦, 郑丽波, 等, 2000. 塔里木盆地中新生界储层砂岩自生矿物组合与两种成岩环境. 浙江大学学报(理学版), 27(3): 307-314.
      张惠良, 张荣虎, 杨海军, 等, 2014. 超深层裂缝-孔隙型致密砂岩储集层表征与评价: 以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例. 石油勘探与开发, 41(2): 158-167.
      赵桂萍, 2011. 天山南、北冲断-褶皱带油气成藏条件对比与评价. 石油与天然气地质, 32(6): 903-908.
      钟大康, 朱筱敏, 王红军, 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学(D辑: 地球科学), 38(增刊1): 11-18.
      朱明, 袁波, 梁则亮, 等, 2021. 准噶尔盆地周缘断裂属性与演化. 石油学报, 42(9): 1163-1173.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (385) PDF downloads(65) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return