• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 6
    Jun.  2024
    Turn off MathJax
    Article Contents
    Lin Xu, Liu Jing, Liu Haijin, Shang Min, 2024. When was the Yellow River Formed?. Earth Science, 49(6): 2158-2185. doi: 10.3799/dqkx.2023.124
    Citation: Lin Xu, Liu Jing, Liu Haijin, Shang Min, 2024. When was the Yellow River Formed?. Earth Science, 49(6): 2158-2185. doi: 10.3799/dqkx.2023.124

    When was the Yellow River Formed?

    doi: 10.3799/dqkx.2023.124
    • Received Date: 2023-04-20
      Available Online: 2024-07-11
    • Publish Date: 2024-06-25
    • Rivers are one of the important geological forces that shape the land surface. Understanding the development history of big rivers is helpful for us to improve the efficiency of using big rivers, so as to promote the development of human society. The Yellow River is the mother river of China. Researchers have conducted extensive research on it in the past hundred years, however, there is no clear answer to the question of when it was formed and the specific evolution process. In view of this, on the basis of our previous research results, this paper extensively collected and collated the data published by domestic and foreign researchers to reconstruct the evolution process of the Yellow River during the Cenozoic era. The results show that: The proto-Yellow River, which flowed along the plateau boundary, developed in the northeastern part of the Tibetan Plateau in the Paleogene. In the Miocene, the eastern Qilian Mountains developed parallel rivers flowing into the depocenter of Longxi basin, and large rivers with different flow directions appeared in the north and south parts of the Jinshan Gorge. The Yellow River had not yet appeared in the Bohai Bay Basin and the South Yellow Sea Basin during the Miocene. The Yellow River entered the stage of segmental evolution in this time. In Pliocene, the Yellow River had already connected Xining basin, Lanzhou basin, Yinchuan Basin and Hetao basin, while Guide basin and Gonghe basin still had internal flow system. At this time, the upper reaches of the Yellow River had not penetrated into the deeper hinterland of the northeast section of the Tibetan Plateau. The Jinshan Gorge still has the Yellow River flowing south into Weihe basin and north into Hetao basin, respectively. The Sanmenxia basin is still occupied by large ancient lakes, and the Yellow River material does not appear in the Bohai Bay basin and the South Yellow Sea basin. Pliocene is an important turning stage for the Yellow River to complete its final connection. In the early Pleistocene, the Yellow River connected the upper, middle and lower reaches, similar to the current connection between the Tibetan Plateau, the Loess Plateau and the North China Plain. The Yellow River flowing east to the sea was formed at this time. In the Late Pleistocene, under the influence of climate change, all sections of the Yellow River entered a new stage of evolution, and some of the river channels were occupied by ancient lakes again. In the period of abundant precipitation, the river channels were connected again. The combination of structure and climate has an important influence on the development of the Yellow River. The maintenance of the high landform in the hinterland of river system is one of the preconditions for the development of river system. In particular, the uplift of the eastern Qilian Mountains in Miocene and Pliocene shaped the basic form of the Yellow River on the interior of the Tibetan Plateau. The uplifting of the Helan, Yin and Qinling Mountains around the Ordos Plateau have shaped the deep graben of Yinchuan, Hetao and Weihe River, which has become an important factor limiting the full transmission of the Yellow River in dry weather periods. The Quaternary is a period of frequent climate change in East Asia, and the final connection of the Yellow River is closely related to the process of climate change. Conversely, the study on the formation and evolution of the Yellow River can effectively reveal the tectonic evolution and climate change of the Cenozoic in North China.

       

    • loading
    • Bao, G. D., Chen, H., Zhao, X. T., 2020. Late Miocene Yellow River Formation in Qingtongxia Area, North China: Detrital Zircon and Heavy Mineral Analysis at Niushou Mountain, Ningxia. Geological Journal, 55(11): 7304-7321. https://doi.org/10.1002/gj.3910
      Bovet, P. M., Ritts, B. D., Gehrels, G., et al., 2009. Evidence of Miocene Crustal Shortening in the North Qilian Shan from Cenozoic Stratigraphy of the Western Hexi Corridor, Gansu Province, China. American Journal of Science, 309(4): 290-329. https://doi.org/10.2475/00.4009.02
      Brookfield, M. E., 1998. The Evolution of the Great River Systems of Southern Asia during the Cenozoic India-Asia Collision: Rivers Draining Southwards. Geomorphology, 22(3-4): 285-312. https://doi.org/10.1016/s0169-555x(97)00082-2
      Cao, X. Z., Li, S. Z., Xu, L. Q., et al., 2015. Mesozoic-Cenozoic Evolution and Mechanism of Tectonic Geomorphology in the Central North China Block: Constraint from Apatite Fission Track Thermochronology. Journal of Asian Earth Sciences, 114: 41-53. https://doi.org/10.1016/j.jseaes.2015.03.041
      Cai, X. M., Guo, G. X., Luan, Y. B., et al., 2010. Forming Time for the Yongdinghe River. Quaternary Sciences, 30(1): 167-174(in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2010.01.17
      Chang, H., Jin, Z. D., An, Z. S., 2009. Sedimentary Evidences of the Uplift of the Qinghai Nanshan (the Mountains South to Qinhai Lake) and Its Implication for Structural Evolution of the Lake Qinghai-Gonghe Basin. Geological Review, 55(1): 49-57(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2009.01.006
      Cox, K. G., 1989. The Role of Mantle Plumes in the Development of Continental Drainage Patterns. Nature, 342: 873-877. https://doi.org/10.1038/342873a0
      Clinkscales, C., Kapp, P., Wang, H. Q., 2020. Exhumation History of the North-Central Shanxi Rift, North China, Revealed by Low-Temperature Thermochronology. Earth and Planetary Science Letters, 536: 116146. https://doi.org/10.1016/j.epsl.2020.116146
      Craddock, W. H., Kirby, E., Harkins, N. W., et al., 2010. Rapid Fluvial Incision along the Yellow River during Headward Basin Integration. Nature Geoscience, 3: 209-213. https://doi.org/10.1038/ngeo777
      Chen, F. H., Fan, Y. X., Chun, X., et al., 2008. Preliminary Research on Megalake Jilantai-Hetao in the Arid Areas of China during the Late Quaternary. Chinese Science Bulletin, 53(11): 1725-1739. https://doi.org/10.1007/s11434-008-0227-3
      Chen, Q., Liu, X. M., Zhao, G. Y., et al., 2022. 0.2 Ma or 1.2 Ma? Timing of the Linking of the Middle and Lower Reaches of the Yellow River Inferred from Loess-Palaeosol Sequences. Geophysical Research Letters, 49(6): e2021GL097510. https://doi.org/10.1029/2021gl097510
      Cheng, F., Garzione, C. N., Jolivet, M., et al., 2019a. Initial Deformation of the Northern Tibetan Plateau: Insights from Deposition of the Lulehe Formation in the Qaidam Basin. Tectonics, 38(2): 741-766. https://doi.org/10.1029/2018tc005214
      Cheng, Y., Li, X. Q., Shu, J. W., et al., 2019b. Sedimentary Evolution and Transgressions of the Western Subei Basin in Eastern China since the Late Pliocene. Acta Geologica Sinica (English Edition), 93(1): 155-166. https://doi.org/10.1111/1755-6724.13774
      Deng, K., Yang, S. Y., Li, C., et al., 2017. Detrital Zircon Geochronology of River Sands from Taiwan: Implications for Sedimentary Provenance of Taiwan and Its Source Link with the East China Mainland. Earth-Science Reviews, 164: 31-47. https://doi.org/10.1016/j.earscirev.2016.10.015
      Enkelmann, E., Ratschbacher, L., Jonckheere, R., et al., 2006. Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin? Geological Society of America Bulletin, 118(5-6): 651-671. https://doi.org/10.1130/b25805.1
      Fan, L. G., Meng, Q. R., Wu, G. L., et al., 2019. Paleogene Crustal Extension in the Eastern Segment of the NE Tibetan Plateau. Earth and Planetary Science Letters, 514: 62-74. https://doi.org/10.1016/j.epsl.2019.02.036
      Fang, X. M., Yan, M. D., van der Voo, R., et al., 2005. Late Cenozoic Deformation and Uplift of the NE Tibetan Plateau: Evidence from High-Resolution Magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geological Society of America Bulletin, 117(9-10): 1208-1225. https://doi.org/10.1130/b25727.1
      Fang, X. M., Fang, Y. H., Zan, J. B., et al., 2019. Cenozoic Magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and Its Constraints on Paleontological, Sedimentological and Tectonomorphological Evolution. Earth-Science Reviews, 190: 460-485. https://doi.org/10.1016/j.earscirev.2019.01.021
      Fu, X. W., Zhu, W. L., Geng, J. H., et al., 2021. The Present-Day Yangtze River Was Established in the Late Miocene: Evidence from Detrital Zircon Ages. Journal of Asian Earth Sciences, 205: 104600. https://doi.org/10.1016/j.jseaes.2020.104600
      Gao, H. S., Li, Z. M., Liu, X. F., et al., 2017. Fluvial Terraces and Their Implications for Weihe River Valley Evolution in the Sanyangchuan Basin. Science China: Earth Sciences, 60(3): 413-427. https://doi.org/10.1007/s11430-016-5037-8
      Grimaud, J. L., Chardon, D., Beauvais, A., 2014. Very Long-Term Incision Dynamics of Big Rivers. Earth and Planetary Science Letters, 405: 74-84. https://doi.org/10.1016/j.epsl.2014.08.021
      Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416: 159-163. https://doi.org/10.1038/416159a
      Guo, Z. T., Sun, B., Zhang, Z. S., et al., 2008. A Major Reorganization of Asian Climate by the Early Miocene. Climate of the Past, 4: 153-174. https://doi.org/10.5194/CP-4-153-2008
      Guo, B. H., Liu, S. P., Peng, T. J., et al., 2018. Late Pliocene Establishment of Exorheic Drainage in the Northeastern Tibetan Plateau as Evidenced by the Wuquan Formation in the Lanzhou Basin. Geomorphology, 303: 271-283. https://doi.org/10.1016/j.geomorph.2017.12.009
      Harkins, N., Kirby, E., Heimsath, A., et al., 2007. Transient Fluvial Incision in the Headwaters of the Yellow River, Northeastern Tibet, China. Journal of Geophysical Research: Earth Surface, 112(F3): 1-21. https://doi.org/10.1029/2006jf000570
      He, M. Y., Mei, X., Zhang, X. H., et al., 2019. Provenance Discrimination of Detrital Zircon U-Pb Dating in the Core CSDP-1 in the Continental Shelf of South Yellow Sea. Journal of Jilin University (Earth Science Edition), 49(1): 85-95(in Chinese with English abstract).
      Hu, X. F., Kirby, E., Pan, B. T., et al., 2011. Cosmogenic Burial Ages Reveal Sediment Reservoir Dynamics along the Yellow River, China. Geology, 39(9): 839-842 doi: 10.1130/G32030.1
      Hu, Z. B., Pan, B. T., Guo, L. Y., et al., 2016. Rapid Fluvial Incision and Headward Erosion by the Yellow River along the Jinshaan Gorge during the Past 1.2 Ma as a Result of Tectonic Extension. Quaternary Science Reviews, 133: 1-14. https://doi.org/10.1016/j.quascirev.2015.12.003
      Hu, Z. B., Pan, B. T., Bridgland, D., et al., 2017. The Linking of the Upper-Middle and Lower Reaches of the Yellow River as a Result of Fluvial Entrenchment. Quaternary Science Reviews, 166: 324-338. https://doi.org/10.1016/j.quascirev.2017.02.026
      Hu, X. F., Chen, D. B., Pan, B. T., et al., 2019a. Sedimentary Evolution of the Foreland Basin in the NE Tibetan Plateau and the Growth of the Qilian Shan since 7 Ma. Geological Society of America Bulletin, 131(9-10): 1744-1760. https://doi.org/10.1130/b35106.1
      Hu, Z. B., Li, M. H., Dong, Z. J., et al., 2019b. Fluvial Entrenchment and Integration of the Sanmen Gorge, the Lower Yellow River. Global and Planetary Change, 178: 129-138. https://doi.org/10.1016/j.gloplacha.2019.04.010
      Huang, X. F., 2014. Tectonic Evolution of Cenozoic Faulted Basin in the Northwestern Margin of Ordos Block (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Huang, X. T., Mei, X., Yang, S. Y., et al., 2021. Disentangling Combined Effects of Sediment Sorting, Provenance, and Chemical Weathering from a Pliocene-Pleistocene Sedimentary Core (CSDP-1) in the South Yellow Sea. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009569. https://doi.org/10.1029/2020gc009569
      Huang, X. M., 2022. Chronology of Fluvial, Lacustrine and Aeolian Sediments in the Upper Reaches of the Yellow River and Implications for Drainage Evolution (Dissertation). Shantou University, Shantou(in Chinese with English abstract).
      Jia, L. Y., Hu, D. G., Wu, H. H., et al., 2017. Yellow River Terrace Sequences of the Gonghe-Guide Section in the Northeastern Qinghai-Tibet: Implications for Plateau Uplift. Geomorphology, 295: 323-336. https://doi.org/10.1016/j.geomorph.2017.06.007
      Ju, Y. W., Yu, K., Wang, G. Z., et al., 2021. Coupling Response of the Meso-Cenozoic Differential Evolution of the North China Craton to Lithospheric Structural Transformation. Earth-Science Reviews, 223: 103859. https://doi.org/10.1016/j.earscirev.2021.103859
      Kong, P., Jia, J., Zheng, Y., 2014. Time Constraints for the Yellow River Traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 15(2): 395-407. https://doi.org/10.1002/2013gc004912
      Li, J. J., 1991. The Environmental Effects of the Uplift of the Qinghai-Xizang Plateau. Quaternary Science Reviews, 10(6): 479-483. https://doi.org/10.1016/0277-3791(91)90041-r
      Li, J. J., Fang, X. M., 1999. Uplift of the Tibetan Plateau and Environmental Changes. Chinese Science Bulletin, 44(23): 2117-2124. https://doi.org/10.1007/bf03182692
      Li, L., Zhong, D. L., 2006. Fission Track Evidence of Cenozoic Uplifting Events of the Taishan Mountain, China. Acta Petrologica Sinica, 22(2): 457-464(in Chinese with English abstract).
      Li, J. J., Fang, X. M., Song, C. H., et al., 2014. Late Miocene-Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes. Quaternary Research, 81(3): 400-423. https://doi.org/10.1016/j.yqres.2014.01.002
      Li, B. F., Sun, D. H., Xu, W. H., et al., 2017. Paleomagnetic Chronology and Paleoenvironmental Records from Drill Cores from the Hetao Basin and Their Implications for the Formation of the Hobq Desert and the Yellow River. Quaternary Science Reviews, 156: 69-89. https://doi.org/10.1016/j.quascirev.2016.11.023
      Li, Z. P., Wang, H. L., Chen, X. L., et al., 2019. Geological Map of the People's Republic of China (Northwest China, 1∶1 500 000). Geological Publishing House, Beijing(in Chinese).
      Li, X. M., Zhang, H. P., Wang, Y. Z., et al., 2020a. Inversion of Bedrock Channel Profiles in the Daqing Shan in Inner Mongolia, Northern China: Implications for Late Cenozoic Tectonic History in the Hetao Basin and the Yellow River Evolution. Tectonophysics, 790: 228558. https://doi.org/10.1016/j.tecto.2020.228558
      Li, Z. Y., Zhang, K., Liang, H., et al., 2020b. Initial Incision of the Jinshan Gorge of the Yellow River, China, Constrained by Terrestrial In Situ Cosmogenic Nuclides Chronology. Quaternary International, 550: 111-119. https://doi.org/10.1016/j.quaint.2020.03.047
      Li, W. D., Zhao, X. T., Yang, Y., et al., 2020. Formation Age and Provenance Analysis of the Gravel Layer in the Yellow River Terraces of the Hetao Basin. Acta Geoscientica Sinica, 41(4): 515-524(in Chinese with English abstract).
      Li, X. M., 2020. Bedrock Rivers in the Daqing Shan in Inner Mongolia, Northern China: Implications for Late Cenozoic Tectonic History in the Hetao Basin and the Yellow River Evolution (Dissertation). China Earthquake Administration, Beijing(in Chinese with English abstract).
      Li, Z. Y., Li, Y. X., Li, W. H., et al., 2021. Sedimentary Characteristics of Paleogene-Neogene in Fenwei Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 56(4): 1120-1133(in Chinese with English abstract).
      Li, Z. Y., Zhang, K., Liang, H., et al., 2022. Large River Chronology along the Jinshaan Gorge on the Yellow River and Its Implications for Initialization. Geomorphology, 400: 108092. https://doi.org/10.1016/j.geomorph.2021.108092
      Liang, H., Zhang, K., Fu, J. L., et al., 2015. Bedrock River Incision Response to Basin Connection along the Jinshan Gorge, Yellow River, North China. Journal of Asian Earth Sciences, 114: 203-211. https://doi.org/10.1016/j.jseaes.2015.07.010
      Lin, A. M., Yang, Z. Y., Sun, Z. M., et al., 2001. How and when Did the Yellow River Develop Its Square Bend? Geology, 29(10): 951. https://doi.org/10.1130/0091-7613(2001)0290951:hawdty>2.0.co;2
      Lin, X. B., Chen, H. L., Wyrwoll, K. H., et al., 2010. Commencing Uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi Section at Its East Side. Journal of Asian Earth Sciences, 37(4): 350-360. https://doi.org/10.1016/j.jseaes.2009.09.005
      Lin, X., Tian, Y. T., Donelick, R. A., et al., 2019. Mesozoic and Cenozoic Tectonics of the Northeastern Edge of the Tibetan Plateau: Evidence from Modern River Detrital Apatite Fission-Track Age Constraints. Journal of Asian Earth Sciences, 170: 84-95. https://doi.org/10.1016/j.jseaes.2018.10.028
      Lin, X., Jolivet, M., Jing, L. Z., et al., 2021. Mesozoic-Cenozoic Cooling History of the Eastern Qinghai Nan Shan (NW China): Apatite Low-Temperature Thermochronology Constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 572: 110416. https://doi.org/10.1016/j.palaeo.2021.110416
      Lin, X., Jolivet, M., Jing, L. Z., et al., 2022. The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments. Geosciences, 12(4): 166. https://doi.org/10.3390/geosciences12040166
      Lin, X., Li, L. L., Liu, H. J., et al., 2022a. Sediments from the Upper Reaches of Yellow River Did Not Enter into Shanxi-Shaanxi Gorge in the Neogene. Journal of Palaeogeography, 24(3): 568-58(in Chinese with English abstract).
      Lin, X., Liu, H. J., Liu, J., et al., 2022b. The Yellow River Did Not Enter the Bohai Bay Basin during theMiocene: Constraints from Detrital Zircon U-Pb Ages. Acta Geologica Sinica, 96(7): 2506-2518(in Chinese with English abstract).
      Lin, X., Wu, L., Jolivet, M., et al., 2022c. Apatite(U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt. Earth Science, 47(4): 1162-1176(in Chinese with English abstract).
      Lin, X., Li, L. L., Liu, J., et al., 2022d. The Yangtze River Contributed Detrital Materials to the Jianghan Basin during the Early Pleistocene: Constraints From Detrital Zircon U-Pb Ages. Earth Sciences(in press)(in Chinese with English abstract).
      Lin, X., Liu, J., Liu, W. M., et al., 2023. Development and Evolution of the Yellow River and Yangtze River. Geological Publishing House, Beijing(in Chinese).
      Liu, J., Zhang, J. Y., Ge, Y. K., et al., 2018. Tectonic Geomorphology: An Interdisciplinary Study of the Interaction among Tectonic Climatic and Surface Processes. Chinese Science Bulletin, 63(30): 3070-3088(in Chinese). doi: 10.1360/N972018-00498
      Liu, J., Chen, X. Q., Shi, W., et al., 2019. Tectonically Controlled Evolution of the Yellow River Drainage System in the Weihe Region, North China: Constraints from Sedimentation, Mineralogy and Geochemistry. Journal of Asian Earth Sciences, 179: 350-364. https://doi.org/10.1016/j.jseaes.2019.05.008
      Liu, J. H., Zhang, P. Z., Zheng, D. W., et al., 2010. Pattern and Timing of Late Cenozoic Rapid Exhumation and Uplift of the Helan Mountain, China. Science China: Earth Sciences, 53(3): 345-355. https://doi.org/10.1007/s11430-010-0016-0
      Liu, T., Ding, Z. L., 1998. Chinese Loess and the Paleomonsoon. Annual Review of Earth and Planetary Sciences, 26: 111-145. https://doi.org/10.1146/annurev.earth.26.1.111
      Liu, Y. M., 2020. Neogene Fluvial Sediments in the Northern Jinshaan Gorge, China: Implications for Early Development of the Yellow River since 8 Ma and Its Response to Rapid Subsidence of the Weihe-Shanxi Graben. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109675. https://doi.org/10.1016/j.palaeo.2020.109675
      Liu, J., Zhang, J. Q., Miao, X. D., et al., 2020. Mineralogy of the Core YRD-1101 of the Yellow River Delta: Implications for Sediment Origin and Environmental Evolution during the Last ~1.9 Myr. Quaternary International, 537: 79-87. https://doi.org/10.1016/j.quaint.2019.12.025
      Liu, Y. M., Rui, X. L., Li, Y. L., 2022a. Long-Term Development Archive of the Yellow River since the Neogene in the Central Jinshaan Gorge, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 591: 110899. https://doi.org/10.1016/j.palaeo.2022.110899
      Liu, J., Wang, P., Chen, X. Q., et al., 2022b. The Changes in Drainage Systems of Weihe Basin and Sanmenxia Basin since Late Pliocene Give New Insights into the Evolution of the Yellow River. Frontiers in Earth Science, 9: 1401. https://doi.org/10.3389/feart.2021.820674
      Liu, Y., Liu, X. B., Wang, S. J., et al., 2022c. Late Cenozoic Channel Migration of the Proto-Yangtze River in the Delta Region: Insights from Cosmogenic Nuclide Burial Dating of Onshore Boreholes. Geomorphology, 407: 108228. https://doi.org/10.1016/j.geomorph.2022.108228
      Lu, H., Wang, X., An, Z., et al. 2004. Geomorphologic Evidence of Phased Uplift of the Northeastern Qinghai-Tibet Plateau since 14 Million Years Ago. Science China: Earth Sciences, 47(9): 822-833.
      Lu, H. J., Sang, S. P., Wang, P., et al., 2022. Initial Uplift of the Qilian Shan, Northern Tibet since ca. 25 Ma: Implications for Regional Tectonics and Origin of Eolian Deposition in Asia. Geological Society of America Bulletin, 134(9-10): 2531-2547. https://doi.org/10.1130/b36242.1
      Lu, H. Y., Zhang, H. Z., Feng, H., et al., 2023. Landform Evolution in Asia during the Cenozoic Revealed by Formation of Drainages of Wei River and Indus River. Palaeogeography, Palaeoclimatology, Palaeoecology, 619: 111516. https://doi.org/10.1016/j.palaeo.2023.111516
      Lutgens, F. K., Tarbuck, E. J., Tasa, D. G., 2013. Foundations of Earth Science: Pearson New International Edition. Pearson Higher Education. Upper Saddle River, Prentice Hall, U. S. A. .
      Miall, A., 2006. How Do we Identify Big Rivers? And How Big Is Big? Sedimentary Geology, 186: 39-50. https://doi.org/10.1016/j.sedgeo.2005.10.001
      Ma, Z. H., Peng, T. J., Feng, Z. T., et al., 2023. Tectonic and Climate Controls on River Terrace Formation on the Northeastern Tibetan Plateau: Evidence from a Terrace Record of the Huangshui River. Quaternary International, 656: 16-25. https://doi.org/10.1016/j.quaint.2022.11.004
      Métivier, F., Gaudemer, Y., Tapponnier, P., et al., 1999. Mass Accumulation Rates in Asia during the Cenozoic. Geophysical Journal International, 137(2): 280-318. https://doi.org/10.1046/j.1365-246x.1999.00802.x
      Meng, K., Wang, E., Chu, J. J., et al., 2020. Late Cenozoic River System Reorganization and Its Origin within the Qilian Shan, NE Tibet. Journal of Structural Geology, 138: 104128. https://doi.org/10.1016/j.jsg.2020.104128
      Miao, Y. F., Fang, X. M., Sun, J. M., et al., 2022. A New Biologic Paleoaltimetry Indicating Late Miocene Rapid Uplift of Northern Tibet Plateau. Science, 378(6624): 1074-1079. https://doi.org/10.1126/science.abo2475
      National Seismological Bureau, 1988. Active fault system around Ordos Massif. Seismological Press, Beijing(in Chinese).
      Nie, J. S., Stevens, T., Rittner, M., et al., 2015. Loess Plateau Storage of Northeastern Tibetan Plateau-Derived Yellow River Sediment. Nature Communications, 6: 8511. https://doi.org/10.1038/ncomms9511
      Pan, B. T., 1994. A Study on the Geomorphic Evolution and Development of the Upper Reaches of Yellow River in Guide Basin. Arid Land Geography, 17(3): 43-50(in Chinese with English abstract).
      Pan, B. T., Su, H., Hu, Z. B., et al., 2009. Evaluating the Role of Climate and Tectonics during Non-Steady Incision of the Yellow River: Evidence from a 1.24 Ma Terrace Record near Lanzhou, China. Quaternary Science Reviews, 28(27-28): 3281-3290. https://doi.org/10.1016/j.quascirev.2009.09.003
      Perrineau, A., van der Woerd, J., Gaudemer, Y., et al., 2011. Incision Rate of the Yellow River in Northeastern Tibet Constrained by 10 and 26 Cosmogenic Isotope Dating of Fluvial Terraces: Implications for Catchment Evolution and Plateau Building. Geological Society, London, Special Publications, 353(1): 189-219. https://doi.org/10.1144/sp353.10
      Pan, B. T., Hu, Z. B., Hu, X. F., et al., 2012. Time-Slice of the Fluvial Evolution in the Northern Jinshaan Gorge during Late Cenozoic. Quaternary Sciences, 32(1): 111-121(in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2012.01.12
      Peng, H., Wang, J., Liu, C., et al., 2022. Mesozoic Exhumation and ca. 10 Ma Reactivation of the Southern Yin Shan, North China, Revealed by Low-Temperature Thermochronology. Tectonophysics, 823: 229189. https://doi.org/10.1016/j.tecto.2021.229189
      Potter, P. E., 1978. Significance and Origin of Big Rivers. The Journal of Geology, 86(1): 13-33. https://doi.org/10.1086/649653
      Polyak, L., Best, K. M., Crawford, K. A., et al., 2013. Quaternary History of Sea Ice in the Western Arctic Ocean Based on Foraminifera. Quaternary Science Reviews, 79: 145-156. https://doi.org/10.1016/j.quascirev.2012.12.018
      Pumpelly, R., 1867. Geological Researches in China, Mongolia, and Japan, during the Years 1862 to 1865. Smithsonian Institution, New York.
      Qi, J., Yang, Q., 2010. Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay Basin Province, China. Marine and Petroleum Geology, 27(4): 757-771. https://doi.org/10.1016/j.marpetgeo.2009.08.012
      Qiu, Y., Wang, L. F., Huang, W. K., 2016. Meso-Cenozoic Sedimentary Basins in Sea Areas of China. Geological Publishing House, Beijing(in Chinese).
      Saylor, J. E., Jordan, J. C., Sundell, K. E., et al., 2018. Topographic Growth of the Jishi Shan and Its Impact on Basin and Hydrology Evolution, NE Tibetan Plateau. Basin Research, 30(3): 544-563. https://doi.org/10.1111/bre.12264
      Schmidt, J. C., 1990. Recirculating Flow and Sedimentation in the Colorado River in Grand Canyon, Arizona. The Journal of Geology, 98(5): 709-724. https://doi.org/10.1086/629435
      Shi, G. Z., Shen, C. B., Zattin, M., et al., 2019. Late Cretaceous-Cenozoic Exhumation of the Helanshan Mt Range, Western Ordos Fold-Thrust Belt, China: Insights from Structural and Apatite Fission Track Analyses. Journal of Asian Earth Sciences, 176: 196-208. https://doi.org/10.1016/j.jseaes.2019.02.016
      Shi, W., Dong, S. W., Hu, J. M., 2020, Neotectonics around the Ordos Block, North China: A Review and New Insights. Earth-Science Reviews, 200: 102969. https://doi.org/10.1016/j.earscirev.2019.102969
      Shu, L. S., Wang, B., Wang, L. S., et al., 2005. Analysis of Northern Jiangsu Prototype Basin from Late Cretaceous to Neogene. Geological Journal of China Universities, 11(4): 534-543(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2005.04.009
      Shu, Q., Zhao, Z. J., Zhao, Y. F., et al., 2021. Magnetic Properties of Late Cenozoic Sediments in the Subei Basin: Implications for the Yangtze River Run-Through Time. Journal of Coastal Research, 37(1): 122-131. https://doi.org/10.2112/jcoastres-d-20-00039.1
      Shang, Y., Prins, M. A., Beets, C. J., et al., 2018. Aeolian Dust Supply from the Yellow River Floodplain to the Pleistocene Loess Deposits of the Mangshan Plateau, Central China: Evidence from Zircon U-Pb Age Spectra. Quaternary Science Reviews, 182: 131-143. https://doi.org/10.1016/j.quascirev.2018.01.001
      Shen, X., Tian, Y., Wang, Y., et al., 2021. Enhanced Quaternary Exhumation in the Central Three Rivers Region, Southeastern Tibet. Frontiers in Earth Science. https://doi.org/10.3389/feart.2021.741491
      Shen, Y. F., Liang, M. Y., Wu, J. X., et al., 2022. Detrital-Zircon Evidence for the Origin of the Late Quaternary Loess in Qingzhou, Shandong Province and Its Implications for the Evolution of the Yellow River. Journal of Earth Science, 33(1): 205-214. https://doi.org/10.1007/s12583-021-1489-9
      Su, Q., Kirby, E., Ren, Z., et al., 2020. Chronology of the Yellow River Terraces at Qingtong Gorge (NE Tibet): Insights into Evolution of the Yellow River since the Middle Pleistocene. Geomorphology, 349: 106889. https://doi.org/10.1016/j.geomorph.2019.106889
      Su, Q., Wang, X. Y., Yuan, D. Y., et al., 2023. Fluvial Entrenchment of the Gonghe Basin and Integration of the Upper Yellow River - Evidence from the Cosmogenically Dated Geomorphic Surfaces. Geomorphology, 429: 108654. https://doi.org/10.1016/j.geomorph.2023.108654
      Sun, J., Guo, F., Wu, H. C., et al., 2022. The Sedimentary Succession of the Last 2.25 Myr in the Bohai Strait: Implications for the Quaternary Paleoenvironmental Evolution of the Bohai Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 110704. https://doi.org/10.1016/j.palaeo.2021.110704
      Tandon, S. K., Sinha, R., 2022. Geology of Large River Systems. Large Rivers: Geomorphology and Management, Second Edition. Wiley Blackwell, Oxford, UK.
      Wang, S. M., Wu, X. H., Zhang, Z. K., et al., 2002. Sedimentary Records of Environmental Evolution in the Sanmen Lake Basin and the Yellow River Running through the Sanmenxia Gorge Eastward into the Sea. Science in China: Earth Sciences, 45(7): 595-608. https://doi.org/10.1360/02yd9061
      Wang, P. X., 2004. Cenozoic Deformation and the History of Sea-Land Interactions in Asia. Geophysical Monograph Series, 149: 1-22. https://doi.org/10.1029/149gm01
      Wang, E., Shi, X. H., Wang, G., et al., 2011. Structural Control on the Topography of the Laji-Jishi and Riyue Shan Belts in the NE Margin of the Tibetan Plateau: Facilitation of the Headward Propagation of the Yellow River System. Journal of Asian Earth Sciences, 40(4): 1002-1014. https://doi.org/10.1016/j.jseaes.2010.05.007
      Wang, X. Y., Lu, H. Y., Vandenberghe, J., et al., 2012. Late Miocene Uplift of the NE Tibetan Plateau Inferred from Basin Filling, Planation and Fluvial Terraces in the Huang Shui Catchment. Global and Planetary Change, 88: 10-19. https://doi.org/10.1016/j.gloplacha.2012.02.009
      Wang, B., Zheng, H. B., Wang, P., et al., 2013. The Cenozoic Strata and Depositional Evolution of Weihe Basin: Progresses and Problems. Advances in Earth Science, 28(10): 1126-1135(in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2013.10.1126
      Wang, B., Chang, H., Duan, K. Q., 2017. The Tectonic Uplift and Its Environmental Effects of the Qinling Mountains during the Cenozoic Era: Progress and Problems. Advances in Earth Science, 32(7): 707-715(in Chinese with English abstract).
      Wang, Z. X., Shen, Y. J., Licht, A., et al., 2018. Cyclostratigraphy and Magnetostratigraphy of the Middle Miocene Ashigong Formation, Guide Basin, China, and Its Implications for the Paleoclimatic Evolution of NE Tibet. Paleoceanography and Paleoclimatology, 33(10): 1066-1085. https://doi.org/10.1029/2018pa003409
      Wang, Z., Nie, J. S., Wang, J. P., et al., 2019a. Testing Contrasting Models of the Formation of the Upper Yellow River Using Heavy-Mineral Data from the Yinchuan Basin Drill Cores. Geophysical Research Letters, 46(17-18): 10338-10345. https://doi.org/10.1029/2019gl084179
      Wang, K. S., Shi, X. F., Yao, Z. Q., et al., 2019b. Heavy-Mineral-Based Provenance and Environment Analysis of a Pliocene Series Marking a Prominent Transgression in the South Yellow Sea. Sedimentary Geology, 382: 25-35. https://doi.org/10.1016/j.sedgeo.2019.01.005
      Wang, D. D., Zhang, J. D., Liu, X. F., et al. 2021. Structural Framework of Sanmenxia Basin, Henan Province and Its Oil and Gas Resources Potential Analysis. Geology in China(in press)(in Chinese with English abstract).
      Wang, W. T., Zhang, P. Z., Garzione, C. N., et al., 2022a. Pulsed Rise and Growth of the Tibetan Plateau to Its Northern Margin since ca. 30 Ma. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2120364119. https://doi.org/10.1073/pnas.2120364119
      Wang, M. M., Tian, Y. T., Zhou, B. G., et al., 2022b. Instant Far-Field Effects of Continental Collision: An Example Study in the Qinling Orogen, Northeast of the Tibetan Plateau. Tectonophysics, 833: 229334. https://doi.org/10.1016/j.tecto.2022.229334
      Wang, X., Hu, G., Saito, Y., et al., 2022c. Did the Modern Yellow River Form at the Mid-Pleistocene Transition? Science Bulletin, 67(15): 1603-1610. https://doi.org/10.1016/j.scib.2022.06.003
      Wang, Z. X., Mao, Y. D., Geng, J. Z., et al., 2022d. Pliocene-Pleistocene Evolution of the Lower Yellow River in Eastern North China: Constraints on the Age of the Sanmen Gorge Connection. Global and Planetary Change, 213: 103835. https://doi.org/10.1016/j.gloplacha.2022.103835
      Wang, Z., Nie, J. S., Peng, W. B., et al., 2022. Late Pliocene Sedimentary Provenance of the Yinchuan Basin and Its Constraints on the Formation Age of the Upper Yellow River. Acta Sedimentologica Sinica, 40(4): 924-930(in Chinese with English abstract).
      Wen, Y. X., Zhang, L. M., Holbourn, A. E., et al., 2023. CO2-Forced Late Miocene Cooling and Ecosystem Reorganizations in East Asia. Proceedings of the National Academy of Sciences of the United States of America, 120(5): e2214655120. https://doi.org/10.1073/pnas.2214655120
      Wu, L., Wang, F., Yang, J. H., et al., 2020. Meso-Cenozoic Uplift of the Taihang Mountains, North China: Evidence from Zircon and Apatite Thermochronology. Geological Magazine, 157(7): 1097-1111. https://doi.org/10.1017/s0016756819001377
      Xiao, G. Q., Sun, Y. Q., Yang, J. L., et al., 2020. Early Pleistocene Integration of the Yellow River Ⅰ: Detrital-Zircon Evidence from the North China Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109691. https://doi.org/10.1016/j.palaeo.2020.109691
      Xiao, G. Q., Pan, Q., Zhao, Q. Y., et al., 2021. Early Pleistocene Integration of the Yellow River Ⅱ: Evidence from the Plio-Pleistocene Sedimentary Record of the Fenwei Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110550. https://doi.org/10.1016/j.palaeo.2021.110550
      Xu, L. Q., Li, S. Z., Guo, L. L., et al., 2016. Impaction of the Tan-Lu Fault Zone on Uplift of the Luxi Rise: Constraints from Apatite Fission Track Thermochronology. Acta Petrologica Sinica, 32(4): 1153-1170(in Chinese with English abstract).
      Xu, Q. M., Yuan, G. B., Yang, J. L., et al., 2017. Plio-Pleistocene Magnetostratigraphy of Northern Bohai Bay and Its Implications for Tectonic Events since ca. 2.0 Ma. Journal of Geodynamics, 111: 1-14. https://doi.org/10.1016/j.jog.2017.08.002
      Xu, Q. Q., Ji, J. Q., Zhao, W. T., et al., 2017. Uplift-Exhumation History of Daqing Mountain, Inner Mongolia since Late Mesozoic. Acta Scientiarum Naturalium Universitatis Pekinensis, 53(1): 57-65(in Chinese with English abstract).
      Xu, Q. H., Wu, N., Wang, J., et al., 2023. Sedimentary Characteristics and Lake Basin Evolution of Salinized Lake Basin of Qingshuiying Formation in Yinchuan Basin. Earth Science, 48(1): 317-328(in Chinese with English abstract).
      Yao, Z. Q., Shi, X. F., Qiao, S. Q., et al., 2017. Persistent Effects of the Yellow River on the Chinese Marginal Seas Began at Least ~880 ka ago. Scientific Reports, 7(1): 2827. https://doi.org/10.1038/s41598-017-03140-x
      Yao, X., 2019. Residual Subsidence of the Cenozoic Rift Basin in the East Asian Continental Margin and Its Genesis Analysis (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Yan, J. Y., 2021. Late Cenozoic Tectonic-Sedimenatary, Uplifting and Denudational Process of the Yuncheng Basin and Northern Gushan Mountain (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
      Yang, S. Y., Cai, J. G., Li, C. X., et al., 2001. New Discussion about the Run-Through Time of the Yellow River. Marine Geology & Quaternary Geology, 21(2): 15-20(in Chinese with English abstract).
      Yang, R. S., Fang, X. M., Meng, Q. Q., et al., 2017a. Paleomagnetic Constraints on the Middle Miocene-Early Pliocene Stratigraphy in the Xining Basin, NE Tibetan Plateau, and the Geologic Implications. Geochemistry, Geophysics, Geosystems, 18(11): 3741-3757. https://doi.org/10.1002/2017GC006945
      Yang, L. R., Li, J. X., Yue, L. P., et al., 2017b. Paleogene-Neogene Stratigraphic Realm and Tectonic-Sedimentary Evolution of the Qilian Mountains and Their Surrounding Areas. Science China: Earth Sciences, 60(5): 992-1009. https://doi.org/10.1007/s11430-016-9030-2
      Yang, J. L., Yuan, H. F., Hu, Y. Z., et al., 2022. Significance of Sedimentary Provenance Reconstruction Based on Borehole Records of the North China Plain for the Evolution of the Yellow River. Geomorphology, 401: 108077. https://doi.org/10.1016/j.geomorph.2021.108077
      Yi, L., Deng, C., Tian, L., et al., 2016. Plio-Pleistocene evolution of Bohai Basin (East Asia): Demise of Bohai Paleolake and Transition to Marine Environment. Scientific Reports, 6(1): 1-9.
      Yi, K. X., Cheng, F., Yang, Y. Z., et al., 2022. Pleistocene Northward Thrusting of the Danghe Nanshan: Implications for the Growth of the Qilian Shan, Northeastern Tibetan Plateau. Tectonophysics, 838: 229476. https://doi.org/10.1016/j.tecto.2022.229476
      Yin, M. S., Huang, H. P., 2020. Quaternary Exhumation History of the NE Tibetan Plateau Revealed by Peculiar Distributions of Polycyclic Aromatic Hydrocarbons in Core Extracts from the Sanhu Depression, Eastern Qaidam Basin. Journal of Quaternary Science, 35(7): 869-880. https://doi.org/10.1002/jqs.3235
      Yu, J. X., Zheng, D. W., Pang, J. Z., et al., 2022. Cenozoic Mountain Building in Eastern China and Its Correlation with Reorganization of the Asian Climate Regime. Geology, 50(7): 859-863. https://doi.org/10.1130/g49917.1
      Zhao, H. G., Liu, C. Y., Wang, F., et al., 2007. Uplift and Evolution of Helan Mountain. Science China: Earth Sciences, 50(2): 217-226. https://doi.org/10.1007/s11430-007-6010-5
      Zhao, X. T., Yang, Y., Jia, L. Y., et al., 2021. A Discussion on the Age and Evolution Process of the Late Gonghe Paleolake and Its Relations with the Crustal Movement and the Development of the Yellow River. Acta Geoscientica Sinica, 42(4): 451-471(in Chinese with English abstract).
      Zhang, Y. Q., Mercier, J. L., Vergély, P., 1998. Extension in the Graben Systems around the Ordos (China), and Its Contribution to the Extrusion Tectonics of South China with Respect to Gobi-Mongolia. Tectonophysics, 285(1-2): 41-75. https://doi.org/10.1016/s0040-1951(97)00170-4
      Zhang, Z. K., Wang, S. M., Yang, X. D., et al., 2004. Evidence of a Geological Event and Environmental Change in the Catchment Area of the Yellow River at 0.15 Ma. Quaternary International, 117(1): 35-40. https://doi.org/10.1016/s1040-6182(03)00114-9
      Zhang, H. P., Craddock, W. H., Lease, R. O., et al., 2012. Magnetostratigraphy of the Neogene Chaka Basin and Its Implications for Mountain Building Processes in the North-Eastern Tibetan Plateau. Basin Research, 24(1): 31-50. https://doi.org/10.1111/j.1365-2117.2011.00512.x
      Zhang, H., Zhang, P., Champagnac, J. D., et al., 2014. Pleistocene Drainage Reorganization Driven by the Isostatic Response to Deep Incision into the Northeastern Tibetan Plateau. Geology, 42(4): 303-306. https://doi.org/10.1130/g35115.1
      Zhang, W. L., Zhang, T., Song, C. H., et al., 2017. Termination of Fluvial-Alluvial Sedimentation in the Xining Basin, NE Tibetan Plateau, and Its Subsequent Geomorphic Evolution. Geomorphology, 297: 86-99. https://doi.org/10.1016/j.geomorph.2017.09.008
      Zhang, P., Ao, H., Dekkers, M. J., et al., 2018. Magnetochronology of the Oligocene Mammalian Faunas in the Lanzhou Basin, Northwest China. Journal of Asian Earth Sciences, 159: 24-33. https://doi.org/10.1016/j.jseaes.2018.03.021
      Zhang, X. Y., He, M. Y., Wang, B., et al., 2019a. Provenance Evolution of the Northern Weihe Basin as an Indicator of Environmental Changes during the Quaternary. Geological Magazine, 156(11): 1915-1923. https://doi.org/10.1017/s0016756819000244
      Zhang, J., Wan, S. M., Clift, P. D., et al., 2019b. History of Yellow River and Yangtze River Delivering Sediment to the Yellow Sea since 3.5 Ma: Tectonic or Climate Forcing? Quaternary Science Reviews, 216: 74-88. https://doi.org/10.1016/j.quascirev.2019.06.002
      Zhang, R. F., Yu, F. S., Liu, X. H., et al., 2020. Evolutionary Characteristics of Linhe Depression and Its Surrounding Areas in Hetao Basin from the Mesozoic to Cenozoic. Oil & Gas Geology, 41(6): 1139-1150(in Chinese with English abstract).
      Zhang, J., Wang, Y. N., Zhang, B. H., et al., 2021a. Tectonothermal Events in the Central North China Craton since the Mesozoic and Their Tectonic Implications: Constraints from Low-Temperature Thermochronology. Tectonophysics, 804: 228769. https://doi.org/10.1016/j.tecto.2021.228769
      Zhang, H. Z., Lu, H. Y., Zhou, Y. L., et al., 2021b. Heavy Mineral Assemblages and UPb Detrital Zircon Geochronology of Sediments from the Weihe and Sanmen Basins: New Insights into the Pliocene-Pleistocene Evolution of the Yellow River. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110072. https://doi.org/10.1016/j.palaeo.2020.110072
      Zhang, J., Geng, H. P., Pan, B. T., et al., 2022. Coupling of Tectonic Uplift and Climate Change as Influences on Drainage Evolution: A Case Study at the NE Margin of the Tibetan Plateau. CATENA, 216: 106433. https://doi.org/10.1016/j.catena.2022.106433
      Zheng, D., Wang, W. T., Wan, J. L., et al., 2017. Progressive Northward Growth of the Northern Qilian Shan-Hexi Corridor (Northeastern Tibet) during the Cenozoic. Lithosphere, 9: 408-416. https://doi.org/10.1130/l587.1
      Zhou, S. Z., Wang, X. L., Wang, J., et al., 2006. A Preliminary Study on Timing of the Oldest Pleistocene Glaciation in Qinghai-Tibetan Plateau. Quaternary International, 154: 44-51. https://doi.org/10.1016/j.quaint.2006.02.002
      Zhou, Z. C., 2020. Fault Structural Style Analysis and Favorable Tectonic Zone Evaluation of Linhe Depression in Hetao Basin (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      蔡向民, 郭高轩, 栾英波, 等, 2010. 永定河形成时代研究. 第四纪研究, 30(1): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201001017.htm
      常宏, 金章东, 安芷生, 2009. 青海南山隆起的沉积证据及其对青海湖—共和盆地构造分异演化的指示. 地质论评, 55(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901008.htm
      国家地震局, 1988. 鄂尔多斯周缘活动断裂系. 北京: 地震出版社.
      何梦颖, 梅西, 张训华, 等, 2019. 南黄海陆架区CSDP-1孔沉积物碎屑锆石U-Pb年龄物源判别. 吉林大学学报(地球科学版), 49(1): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201901010.htm
      黄兴富, 2014. 鄂尔多斯地块西北缘新生代断陷盆地构造演化(硕士学位论文). 北京: 中国地质大学.
      黄贤妹, 2022. 黄河上游河流、湖泊和风成沉积年代学与流域演化(博士学位论文). 汕头: 汕头大学.
      李理, 钟大赉, 2006. 泰山新生代抬升的裂变径迹证据. 岩石学报, 22(2): 457-464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602018.htm
      李智超, 2017. 渭河盆地新生代岩相古地理及环境演化(博士学位论文). 西安: 西北大学.
      李智佩, 王洪亮, 陈隽璐, 等, 2019. 中华人民共和国地质图(西北, 1∶1 500 000). 北京: 地质出版社.
      李维东, 赵希涛, 杨艳, 等, 2020. 黄河河套盆地段阶地砾石层的形成时代和物源分析. 地球学报, 41(4): 515-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202004008.htm
      李雪梅, 2020. 内蒙古大青山地区基岩河流地貌研究—对河套盆地晚新生代构造和黄河演化的启示(博士学位论文). 北京: 中国地震局地质研究所.
      李兆雨, 李永项, 李文厚, 等, 2021. 汾渭盆地古近系—新近系沉积特征. 地质科学, 56(4): 1120-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202104009.htm
      林旭, 李玲玲, 刘海金, 等, 2022a. 黄河上游物质在新近纪未流入晋陕峡谷. 古地理学报, 24(3): 568-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202203012.htm
      林旭, 刘海金, 刘静, 等, 2022b. 黄河中新世未进入渤海湾盆地: 来自碎屑锆石U-Pb年龄的约束. 地质学报, 96(7): 2506-2518. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207017.htm
      林旭, 吴林, Jolivet, M., 等, 2022c. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162-1176. doi: 10.3799/dqkx.2021.083
      林旭, 李玲玲, 刘静, 等, 2022d. 长江早更新世向江汉盆地输送碎屑物质: 来自碎屑锆石U-Pb年龄的约束. 地球科学(待刊).
      林旭, 刘静, 刘维明, 等, 2023. 黄河和长江发育与演化. 北京: 地质出版社.
      刘静, 张金玉, 葛玉魁, 等, 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201830003.htm
      潘保田, 1994. 贵德盆地地貌演化与黄河上游发育研究. 干旱区地理, 17(3): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199403005.htm
      潘保田, 胡振波, 胡小飞, 等, 2012. 晋陕峡谷北段晚新生代河流演化初步研究. 第四纪研究, 32(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201201018.htm
      邱燕, 王立飞, 黄文凯, 2016. 中国海域中新生代沉积盆地. 北京: 地质出版社.
      舒良树, 王博, 王良书, 等, 2005. 苏北盆地晚白垩世—新近纪原型盆地分析. 高校地质学报, 11(4): 534-543. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504009.htm
      王斌, 郑洪波, 王平, 等, 2013. 渭河盆地新生代地层与沉积演化研究: 现状和问题. 地球科学进展, 28(10): 1126-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201601003.htm
      王斌, 常宏, 段克勤, 2017. 秦岭新生代构造隆升与环境效应: 进展与问题. 地球科学进展, 32(7): 707-715. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202305001.htm
      王丹丹, 张交东, 刘旭锋, 等, 2021. 河南三门峡盆地构造格架及其油气资源远景分析. 中国地质(待刊).
      王钊, 聂军胜, 彭文彬, 等, 2022. 银川盆地晚上新世物质来源及其对黄河上游形成年代的约束. 沉积学报, 40(4): 924-930. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202204006.htm
      许立青, 李三忠, 郭玲莉, 等, 2016. 郯庐断裂带对鲁西隆升过程的影响: 磷灰石裂变径迹证据. 岩石学报, 32(4): 1153-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202303010.htm
      徐芹芹, 季建清, 赵文韬, 等, 2017. 内蒙古大青山晚中生代以来的隆升-剥露过程. 北京大学学报(自然科学版), 53(1): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201701007.htm
      徐清海, 吴楠, 王健, 等, 2023. 银川盆地清水营组咸化湖盆沉积特征与湖盆演化. 地球科学, 48(1): 317-328. doi: 10.3799/dqkx.2021.257
      姚翔, 2019. 东亚陆缘新生代裂谷盆地残余沉降及其成因(博士学位论文). 北京: 中国地质大学.
      闫纪元, 2021. 运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究(博士学位论文). 北京: 中国地质科学院.
      杨守业, 蔡进功, 李从先, 等, 2001. 黄河贯通时间的新探索. 海洋地质与第四纪地质, 21(2): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200102003.htm
      赵希涛, 杨艳, 贾丽云, 等, 2021. 论晚期共和古湖时代、演化过程及其与地壳运动和黄河发育的关系. 地球学报, 42(4): 451-471. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202104001.htm
      张锐锋, 于福生, 刘喜恒, 等, 2020. 河套盆地临河坳陷及其周边地区中-新生代成盆演化特征. 石油与天然气地质, 41(6): 1139-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006004.htm
      周志成, 2020. 河套盆地临河坳陷断裂构造样式分析与有利构造区带评价(博士学位论文). 北京: 中国地质大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)

      Article views (1402) PDF downloads(244) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return