Citation: | Zhang Peiyao, Wen Zhang, Li Yiming, 2024. Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone. Earth Science, 49(7): 2637-2649. doi: 10.3799/dqkx.2023.130 |
Bardini, L., Boano, F., Cardenas, M. B., et al., 2012. Nutrient Cycling in Bedform Induced Hyporheic Zones. Geochimica et Cosmochimica Acta, 84: 47-61. https://doi.org/10.1016/j.gca.2012.01.025
|
Bencala, K. E., 1983. Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream with a Kinetic Mass Transfer Model for Sorption. Water Resources Research, 19(3): 732-738. https://doi.org/10.1029/WR019i003p00732
|
Craig, L. S., Bahr, J. M., Roden, E. E., 2010. Localized Zones of Denitrification in a Floodplain Aquifer in Southern Wisconsin, USA. Hydrogeology Journal, 18(8): 1867-1879. https://doi.org/10.1007/s10040-010-0665-2
|
Elliott, A. H., Brooks, N. H., 1997. Transfer of Nonsorbing Solutes to a Streambed with Bed Forms: Theory. Water Resources Research, 33(1): 123-136. https://doi.org/10.1029/96wr02784
|
Gomez-Velez, J. D., Wilson, J. L., Cardenas, M. B., et al., 2017. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resources Research, 53(10): 8572-8595. https://doi.org/10.1002/2017wr021362
|
Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T., et al., 2000. Nitrogen Flux and Sources in the Mississippi River Basin. Science of the Total Environment, 248(2-3): 75-86. https://doi.org/10.1016/s0048-9697(99)00532-x
|
Grant, S. B., Azizian, M., Cook, P., et al., 2018. Factoring Stream Turbulence into Global Assessments of Nitrogen Pollution. Science, 359(6381): 1266-1269. https://doi.org/10.1126/science.aap8074
|
Harvey, J. W., Drummond, J. D., Martin, R. L., et al., 2012. Hydrogeomorphology of the Hyporheic Zone: Stream Solute and Fine Particle Interactions with a Dynamic Streambed. Journal of Geophysical Research: Biogeosciences, 117(G4): G00N11. https://doi.org/10.1029/2012jg002043
|
Howden, N. J. K., Burt, T. P., Worrall, F., et al., 2011. Nitrate Pollution in Intensively Farmed Regions: What are the Prospects for Sustaining High-Quality Groundwater? Water Resources Research, 47(6): W00L02. https://doi.org/10.1029/2011wr010843
|
Hunter, K. S., Wang, Y. F., Van Cappellen, P., 1998. Kinetic Modeling of Microbially-Driven Redox Chemistry of Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry. Journal of Hydrology, 209(1-4): 53-80. https://doi.org/10.1016/s0022-1694(98)00157-7
|
Käser, D. H., Binley, A., Heathwaite, A. L., et al., 2009. Spatio-Temporal Variations of Hyporheic Flow in a Riffle-Step-Pool Sequence. Hydrological Processes, 23(15): 2138-2149. https://doi.org/10.1002/hyp.7317
|
Kessler, A. J., Cardenas, M. B., Cook, P. L. M., 2015. The Negligible Effect of Bed Form Migration on Denitrification in Hyporheic Zones of Permeable Sediments. Journal of Geophysical Research: Biogeosciences, 120(3): 538-548. https://doi.org/10.1002/2014jg002852
|
Knowles, R., 1982. Denitrification. Microbiological Reviews, 46(1): 43-70. https://doi.org/10.1128/mr.46.1.43-70.1982
|
Li, Y., Zhang, W. W., Yuan, J. H., et al., 2016. Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones. Journal of Hohai University (Natural Sciences), 44(1): 1-7 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2016.01.001
|
McCallum, J. L., Shanafield, M., 2016. Residence Times of Stream-Groundwater Exchanges Due to Transient Stream Stage Fluctuations. Water Resources Research, 52(3): 2059-2073. https://doi.org/10.1002/2015wr017441
|
Nilsson, C., Reidy, C. A., Dynesius, M., et al., 2005. Fragmentation and Flow Regulation of the World's Large River Systems. Science, 308(5720): 405-408. https://doi.org/10.1126/science.1107887
|
Qian, J., Wang, C., Wang, P. F., et al., 2009. Research Progresses in Purification Mechanism and Fitting Width of Riparian Buffer Strip. Advances in Water Science, 20(1): 139-144 (in Chinese with English abstract).
|
Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
|
Shuai, P., Cardenas, M. B., Knappett, P. S. K., et al., 2017. Denitrification in the Banks of Fluctuating Rivers: The Effects of River Stage Amplitude, Sediment Hydraulic Conductivity and Dispersivity, and Ambient Groundwater Flow. Water Resources Research, 53(9): 7951-7967. https://doi.org/10.1002/2017wr020610
|
Singh, T., Gomez-Velez, J. D., Wu, L. W., et al., 2020. Effects of Successive Peak Flow Events on Hyporheic Exchange and Residence Times. Water Resources Research, 56(8): e2020WR027113. https://doi.org/10.1029/2020wr027113
|
Singh, T., Wu, L. W., Gomez-Velez, J. D., et al., 2019. Dynamic Hyporheic Zones: Exploring the Role of Peak Flow Events on Bedform-Induced Hyporheic Exchange. Water Resources Research, 55(1): 218-235. https://doi.org/10.1029/2018WR022993
|
Stonedahl, S. H., Harvey, J. W., Wörman, A., et al., 2010. A Multiscale Model for Integrating Hyporheic Exchange from Ripples to Meanders. Water Resources Research, 46(12): W12539. https://doi.org/10.1029/2009wr008865
|
Sun, B., Zhang, L. X., Yang, L. Z., et al., 2012. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio, 41(4): 370-379. https://doi.org/10.1007/s13280-012-0249-6
|
Trauth, N., Fleckenstein, J. H., 2017. Single Discharge Events Increase Reactive Efficiency of the Hyporheic Zone. Water Resources Research, 53(1): 779-798. https://doi.org/10.1002/2016WR019488
|
Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120
|
Williams, D. D., Febria, C. M., Wong, J. C. Y., 2010. Ecotonal and Other Properties of the Hyporheic Zone. Fundamental and Applied Limnology, 176(4): 349-364. https://doi.org/10.1127/1863-9135/2010/0176-0349
|
Wörman, A., Packman, A. I., Marklund, L., et al., 2006. Exact Three-Dimensional Spectral Solution to Surface-Groundwater Interactions with Arbitrary Surface Topography. Geophysical Research Letters, 33: L0740. https://doi.org/10.1029/2006gl025747
|
Wu, J., Huang, S. F., Tang, H., et al., 2006. Review of Research on Ecosystem Health in Riverine Phreatic Zones. Water Resources Protection, 22(5): 5-8, 27 (in Chinese with English abstract).
|
Xia, J. H., Lin, J. Q., Yao, L., et al., 2010. Edge Structure and Edge Effect of Riparian Zones. Journal of Hohai University (Natural Sciences), 38(2): 215-219 (in Chinese with English abstract).
|
Zhao, S. F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489 (in Chinese with English abstract).
|
Zheng, L. Z., Cardenas, M. B., 2018. Diel Stream Temperature Effects on Nitrogen Cycling in Hyporheic Zones. Journal of Geophysical Research: Biogeosciences, 123(9): 2743-2760. https://doi.org/10.1029/2018jg004412
|
李勇, 张维维, 袁佳慧, 等, 2016. 潜流带水流特性及氮素运移转化研究进展. 河海大学学报(自然科学版), 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm
|
钱进, 王超, 王沛芳, 等, 2009. 河湖滨岸缓冲带净污机理及适宜宽度研究进展. 水科学进展, 20(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200901024.htm
|
屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
|
吴健, 黄沈发, 唐浩, 等, 2006. 河流潜流带的生态系统健康研究进展. 水资源保护, 22(5): 5-8, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB200605001.htm
|
夏继红, 林俊强, 姚莉, 等, 2010. 河岸带的边缘结构特征与边缘效应. 河海大学学报(自然科学版), 38(2): 215-219. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201002022.htm
|
赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
|