• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    Zhang Peiyao, Wen Zhang, Li Yiming, 2024. Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone. Earth Science, 49(7): 2637-2649. doi: 10.3799/dqkx.2023.130
    Citation: Zhang Peiyao, Wen Zhang, Li Yiming, 2024. Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone. Earth Science, 49(7): 2637-2649. doi: 10.3799/dqkx.2023.130

    Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone

    doi: 10.3799/dqkx.2023.130
    • Received Date: 2023-04-18
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • In order to investigate the reactive-transport patterns of nitrate in hyporheic zone during the hyporheic exchange process under a dynamic water level condition, a vertical two-dimensional numerical model of riverbed dune including (river) water fluctuations and sinuous river bed dune was constructed. By considering three types of river level fluctuations scenarios, river bed slope, aerobic respiration, nitrification and denitrification processes in our model, the effects of bed slope and water level fluctuatio scenarios on spatiotemporal evolution of solute distribution and nitrate conversion efficiency of hyporheic zone were systematically discussed. The results show that larger river bed slope condition can increase the solute exchange flux between surface water and the groundwater flow, and reduce the variation degree of solute concentration, which will consequently decrease the conversion efficiency of NO3 in hyporheic zones. Larger subsequent peak level of water fluctuations can prolong hyporheic flow path and increase the variation degree of solute concentration, whereas it can reduce the conversion efficiency of NO3 in hyporheic zones. The duration of subsequent water level fluctuations will affect the time response of solute concentration, but will not affect the conversion efficiency of NO3. Different delay times of subsequent water level fluctuations will affect the humber of NO3 concentration peaks. Furthermore, longer delay time can result in multiple peaks of NO3- concentration.

       

    • loading
    • Bardini, L., Boano, F., Cardenas, M. B., et al., 2012. Nutrient Cycling in Bedform Induced Hyporheic Zones. Geochimica et Cosmochimica Acta, 84: 47-61. https://doi.org/10.1016/j.gca.2012.01.025
      Bencala, K. E., 1983. Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream with a Kinetic Mass Transfer Model for Sorption. Water Resources Research, 19(3): 732-738. https://doi.org/10.1029/WR019i003p00732
      Craig, L. S., Bahr, J. M., Roden, E. E., 2010. Localized Zones of Denitrification in a Floodplain Aquifer in Southern Wisconsin, USA. Hydrogeology Journal, 18(8): 1867-1879. https://doi.org/10.1007/s10040-010-0665-2
      Elliott, A. H., Brooks, N. H., 1997. Transfer of Nonsorbing Solutes to a Streambed with Bed Forms: Theory. Water Resources Research, 33(1): 123-136. https://doi.org/10.1029/96wr02784
      Gomez-Velez, J. D., Wilson, J. L., Cardenas, M. B., et al., 2017. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resources Research, 53(10): 8572-8595. https://doi.org/10.1002/2017wr021362
      Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T., et al., 2000. Nitrogen Flux and Sources in the Mississippi River Basin. Science of the Total Environment, 248(2-3): 75-86. https://doi.org/10.1016/s0048-9697(99)00532-x
      Grant, S. B., Azizian, M., Cook, P., et al., 2018. Factoring Stream Turbulence into Global Assessments of Nitrogen Pollution. Science, 359(6381): 1266-1269. https://doi.org/10.1126/science.aap8074
      Harvey, J. W., Drummond, J. D., Martin, R. L., et al., 2012. Hydrogeomorphology of the Hyporheic Zone: Stream Solute and Fine Particle Interactions with a Dynamic Streambed. Journal of Geophysical Research: Biogeosciences, 117(G4): G00N11. https://doi.org/10.1029/2012jg002043
      Howden, N. J. K., Burt, T. P., Worrall, F., et al., 2011. Nitrate Pollution in Intensively Farmed Regions: What are the Prospects for Sustaining High-Quality Groundwater? Water Resources Research, 47(6): W00L02. https://doi.org/10.1029/2011wr010843
      Hunter, K. S., Wang, Y. F., Van Cappellen, P., 1998. Kinetic Modeling of Microbially-Driven Redox Chemistry of Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry. Journal of Hydrology, 209(1-4): 53-80. https://doi.org/10.1016/s0022-1694(98)00157-7
      Käser, D. H., Binley, A., Heathwaite, A. L., et al., 2009. Spatio-Temporal Variations of Hyporheic Flow in a Riffle-Step-Pool Sequence. Hydrological Processes, 23(15): 2138-2149. https://doi.org/10.1002/hyp.7317
      Kessler, A. J., Cardenas, M. B., Cook, P. L. M., 2015. The Negligible Effect of Bed Form Migration on Denitrification in Hyporheic Zones of Permeable Sediments. Journal of Geophysical Research: Biogeosciences, 120(3): 538-548. https://doi.org/10.1002/2014jg002852
      Knowles, R., 1982. Denitrification. Microbiological Reviews, 46(1): 43-70. https://doi.org/10.1128/mr.46.1.43-70.1982
      Li, Y., Zhang, W. W., Yuan, J. H., et al., 2016. Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones. Journal of Hohai University (Natural Sciences), 44(1): 1-7 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2016.01.001
      McCallum, J. L., Shanafield, M., 2016. Residence Times of Stream-Groundwater Exchanges Due to Transient Stream Stage Fluctuations. Water Resources Research, 52(3): 2059-2073. https://doi.org/10.1002/2015wr017441
      Nilsson, C., Reidy, C. A., Dynesius, M., et al., 2005. Fragmentation and Flow Regulation of the World's Large River Systems. Science, 308(5720): 405-408. https://doi.org/10.1126/science.1107887
      Qian, J., Wang, C., Wang, P. F., et al., 2009. Research Progresses in Purification Mechanism and Fitting Width of Riparian Buffer Strip. Advances in Water Science, 20(1): 139-144 (in Chinese with English abstract).
      Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
      Shuai, P., Cardenas, M. B., Knappett, P. S. K., et al., 2017. Denitrification in the Banks of Fluctuating Rivers: The Effects of River Stage Amplitude, Sediment Hydraulic Conductivity and Dispersivity, and Ambient Groundwater Flow. Water Resources Research, 53(9): 7951-7967. https://doi.org/10.1002/2017wr020610
      Singh, T., Gomez-Velez, J. D., Wu, L. W., et al., 2020. Effects of Successive Peak Flow Events on Hyporheic Exchange and Residence Times. Water Resources Research, 56(8): e2020WR027113. https://doi.org/10.1029/2020wr027113
      Singh, T., Wu, L. W., Gomez-Velez, J. D., et al., 2019. Dynamic Hyporheic Zones: Exploring the Role of Peak Flow Events on Bedform-Induced Hyporheic Exchange. Water Resources Research, 55(1): 218-235. https://doi.org/10.1029/2018WR022993
      Stonedahl, S. H., Harvey, J. W., Wörman, A., et al., 2010. A Multiscale Model for Integrating Hyporheic Exchange from Ripples to Meanders. Water Resources Research, 46(12): W12539. https://doi.org/10.1029/2009wr008865
      Sun, B., Zhang, L. X., Yang, L. Z., et al., 2012. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio, 41(4): 370-379. https://doi.org/10.1007/s13280-012-0249-6
      Trauth, N., Fleckenstein, J. H., 2017. Single Discharge Events Increase Reactive Efficiency of the Hyporheic Zone. Water Resources Research, 53(1): 779-798. https://doi.org/10.1002/2016WR019488
      Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120
      Williams, D. D., Febria, C. M., Wong, J. C. Y., 2010. Ecotonal and Other Properties of the Hyporheic Zone. Fundamental and Applied Limnology, 176(4): 349-364. https://doi.org/10.1127/1863-9135/2010/0176-0349
      Wörman, A., Packman, A. I., Marklund, L., et al., 2006. Exact Three-Dimensional Spectral Solution to Surface-Groundwater Interactions with Arbitrary Surface Topography. Geophysical Research Letters, 33: L0740. https://doi.org/10.1029/2006gl025747
      Wu, J., Huang, S. F., Tang, H., et al., 2006. Review of Research on Ecosystem Health in Riverine Phreatic Zones. Water Resources Protection, 22(5): 5-8, 27 (in Chinese with English abstract).
      Xia, J. H., Lin, J. Q., Yao, L., et al., 2010. Edge Structure and Edge Effect of Riparian Zones. Journal of Hohai University (Natural Sciences), 38(2): 215-219 (in Chinese with English abstract).
      Zhao, S. F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489 (in Chinese with English abstract).
      Zheng, L. Z., Cardenas, M. B., 2018. Diel Stream Temperature Effects on Nitrogen Cycling in Hyporheic Zones. Journal of Geophysical Research: Biogeosciences, 123(9): 2743-2760. https://doi.org/10.1029/2018jg004412
      李勇, 张维维, 袁佳慧, 等, 2016. 潜流带水流特性及氮素运移转化研究进展. 河海大学学报(自然科学版), 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm
      钱进, 王超, 王沛芳, 等, 2009. 河湖滨岸缓冲带净污机理及适宜宽度研究进展. 水科学进展, 20(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200901024.htm
      屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
      吴健, 黄沈发, 唐浩, 等, 2006. 河流潜流带的生态系统健康研究进展. 水资源保护, 22(5): 5-8, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB200605001.htm
      夏继红, 林俊强, 姚莉, 等, 2010. 河岸带的边缘结构特征与边缘效应. 河海大学学报(自然科学版), 38(2): 215-219. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201002022.htm
      赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(1)

      Article views (357) PDF downloads(30) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return