• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Huang Hai, Gong Cheng, 2024. Spatial-Temporal Evolution of Geohazard Chain Participated by Glacier and Snow in Zhibai Gully, SE Tibetan Plateau. Earth Science, 49(10): 3784-3798. doi: 10.3799/dqkx.2023.140
    Citation: Huang Hai, Gong Cheng, 2024. Spatial-Temporal Evolution of Geohazard Chain Participated by Glacier and Snow in Zhibai Gully, SE Tibetan Plateau. Earth Science, 49(10): 3784-3798. doi: 10.3799/dqkx.2023.140

    Spatial-Temporal Evolution of Geohazard Chain Participated by Glacier and Snow in Zhibai Gully, SE Tibetan Plateau

    doi: 10.3799/dqkx.2023.140
    • Received Date: 2022-10-16
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • The glacier and snow-related geohazard chain pose a significant threat to the economic activities in the Southeast Tibetan Plateau. Analyzing the evolution law of disaster can provide support for the risk prevention and mitigation, and also for the early identification of disaster. Based on field survey, remote sensing interpretation, and hazard monitoring, in this paper it aims to analyze the evolution of disaster formation conditions and the activity characteristics of six geohazard chain events since the 1950. The results show that the geohazard chain in Zhibai Gully was driven by glacier activity and rock collapse. The evolution models of geohazard chain are summarized into two types: physical property change chain induced by ice water phase transformation, and geological cascade chain induced by coupling of multi factors. It is found that the disaster activity is significantly controlled by the earthquake, and the disaster characteristics is correlated with the temporal-spatial evolution of the formation conditions. Under the influence of the earthquake and deglacialtion, the initiation of disaster chain is transformed from glacier active to rock collapse. The increasing of soil material sources and the effect of ice water phase transformation both enhance the evolution length and scale of disaster. For the present, the Zelongnong glacier is retreating seriously, decreasing the possibility of a geohazard triggered by a glacier. Corresponding the ice/rock avalanche becomes the key to the geohazard chain.

       

    • loading
    • Al, L. A. E., 2013. Working Group Ⅰ Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis Summary for Policymakers. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415324.004
      An, B. S., Wang, W. C., Yang, W., et al., 2022. Process, Mechanisms, and Early Warning of Glacier Collapse-Induced River Blocking Disasters in the Yarlung Tsangpo Grand Canyon, Southeastern Tibetan Plateau. Science of the Total Environment, 816: 151652. https://doi.org/10.1016/j.scitotenv.2021.151652
      Chen, C., Li, H. Y., Chen, J. K., et al., 2022. Overtopping and Flood Routing Process of Landslide Dams Consisted of Ice-Soil Mixtures: A Preliminary Study. Journal of Hydrology, 604: 127252. https://doi.org/10.1016/j.jhydrol.2021.127252
      Chen, C., Zhang, L. M., Xiao, T., et al., 2020. Barrier Lake Bursting and Flood Routing in the Yarlung Tsangpo Grand Canyon in October 2018. Journal of Hydrology, 583: 124603. https://doi.org/10.1016/j.jhydrol.2020.124603
      Cui, P., Chen, R., Xiang, L. Z., et al., 2014. Risk Analysis of Mountain Hazards in Tibetan Plateau under Global Warming. Progressus Inquisitiones DE Mutatione Climatis, 10(2): 103-109(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1719.2014.02.004
      Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31(6): 508-527. https://doi.org/10.2747/0272-3646.31.6.508
      Cui, P., Guo, J., 2021. Evolution Models, Risk Prevention and Control Countermeasures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract).
      Cui, P., Guo, X. J., Jiang, T. H., et al., 2019. Disaster Effect Induced by Asian Water Tower Change and Mitigation Strategies. Bulletin of Chinese Academy of Sciences, 34(11): 1313-1321(in Chinese with English abstract).
      Cui, S. H., Pei, X. J., Huang, R. Q., 2019. An Initiation Model of DGB Landslide: Non-Coordinated Deformation Inducing Rock Damage in Sliding Zone during Strong Seismic Shaking. Chinese Journal of Rock Mechanics and Engineering, 38(2): 237-253(in Chinese with English abstract).
      Delaney, K. B., Evans, S. G., 2015. The 2000 Yigong Landslide (Tibetan Plateau), Rockslide-Dammed Lake and Outburst Flood: Review, Remote Sensing Analysis, and Process Modelling. Geomorphology, 246: 377-393. https://doi.org/10.1016/j.geomorph.2015.06.020
      Dong, H. W., Xu, Z. Q., Cao, H., et al., 2018. Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution. Earth Science, 43(4): 933-951(in Chinese with English abstract).
      Fan, X. M., Xu, Q., Scaringi, G., et al., 2017. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides, 14(6): 2129-2146. https://doi.org/10.1007/s10346-017-0907-7
      Feng, W. K., Hu, Y. P., Xie, J. Z., et al., 2016. Disaster Mechanism and Stability Analysis of Shattered Bedding Slopes Triggered by Rainfall—A Case Study of Sanxicun Landslide. Chinese Journal of Rock Mechanics and Engineering, 35(11): 2197-2207(in Chinese with English abstract).
      Feng, Y. T., Xiao, S. X., Hou, X. L., et al., 2006. Study on Slope Stability Based on Rockfall Impetus Actions. Chinese Journal of Rock Mechanics and Engineering, 25(S1): 2682-2686(in Chinese with English abstract).
      Hu, K. H., Zhang, X. P., You, Y., et al., 2019. Landslides and Dammed Lakes Triggered by the 2017 Ms6.9 Milin Earthquake in the Tsangpo Gorge. Landslides, 16(5): 993-1001. https://doi.org/10.1007/s10346-019-01168-w
      Li, B., Gao, Y., Wan, J. W., et al., 2020. The Chain of the Major Geological Disasters and Related Strategies in the Yalu-Zangbu River Canyon Region. Hydropower and Pumped Storage, 6(2): 11-14, 35(in Chinese with English abstract).
      Li, J., Chu, H. L., Li, B., et al., 2021. Analysis of Development Characteristics of High-Elevation Chain Geological Hazard in Zelongnong, Nyingchi, Tibet Based on High Resolution Image and InSAR Interpretation. The Chinese Journal of Geological Hazard and Control, 32(3): 42-50(in Chinese with English abstract).
      Li, W. L., Zhao, B., Xu, Q., et al., 2022. More Frequent Glacier-Rock Avalanches in Sedongpu Gully are Blocking the Yarlung Zangbo River in Eastern Tibet. Landslides, 19(3): 589-601. https://doi.org/10.1007/s10346-021-01798-z
      Liu, J. J., Cheng, Z. L., Li, Y., 2013. Glacier Lake Outburst Floods of the Guangxieco Lake in 1988 in Tibet, China. Natural Hazards and Earth System Sciences Discussions, 1(5): 4605-4634.
      Liu, W. F., Xiao, S. X., Sui, Y. C., et al., 2006. Analysis of Natural Disaster Chain and Chain-Cutting Disaster Mitigation Mode. Chinese Journal of Rock Mechanics and Engineering, (s1): 2675-2681 (in Chinese with English abstract).
      Liu, Y. P., Montgomery, D. R., Hallet, B., et al., 2006. Quaternary Glacier Blocking Events at the Entrance of Yarlung Zangbo Great Canyon, Southeast Tibet. Quaternary Sciences, (S1): 52-62 (in Chinese with English abstract).
      Lu, C. F., Cai, C. X., 2019. Challenges and Countermeasures for Construction Safety during the Sichuan-Tibet Railway Project. Engineering, 5(5): 833-838. https://doi.org/10.1016/j.eng.2019.06.007
      Ma, S. Y., Xu, C., Xu, X. W., et al., 2020. Characteristics and Causes of the Landslide on July 23, 2019 in Shuicheng, Guizhou Province, China. Landslides, 17(6): 1441-1452. https://doi.org/10.1007/s10346-020-01374-x
      Ma, Y. M., Ruan, W. M., Niu, C., et al., 2022. Movement History of the Microcontinents from the Tibetan Plateau Based on Paleomagnetic Results with Sufficient Sampling Units. Journal of Earth Science, 33(5): 1072-1080. https://doi.org/10.1007/s12583-022-1721-2
      Qiao, J. P., Huang, D., Yang, Z. J., et al., 2012. Statistical Method on Dynamic Reserve of Debris Flow's Source Materials in Meizoseismal Area of Wenchuan Earthquake Region. The Chinese Journal of Geological Hazard and Control, 23(2): 1-6(in Chinese with English abstract).
      Shang, Y. J., Yang, Z. F., Li, L. H., et al., 2003. A Super-Large Landslide in Tibet in 2000: Background, Occurrence, Disaster, and Origin. Geomorphology, 54(3-4): 225-243. https://doi.org/10.1016/S0169-555X(02)00358-6
      Shen, Y. J., Chen, S. W., Zhang, L., et al., 2022. High-Altitude Initiation, Dynamic Collapse and Phase Transformation of Mountain Snow-Ice Melt Geological Disaster Chain. Journal of Glaciology and Geocryology, 44(2): 643-656(in Chinese with English abstract).
      Shi, Y. F., Yang, Z. H., Xie, Z. C., et al., 1964. The Glacial Debris Flow in Guxiang, Tibet. Chinese Science Bulletin, 6: 542-544(in Chinese).
      Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455
      Tang, M. G., Xu, Q., Deng, W. F., et al., 2022a. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931(in Chinese with English abstract).
      Tang, M. G., Wang, L. N., Liu, X. X., et al., 2022b. Distribution and Risk of Ice Avalanche Hazards in Tibetan Plateau. Earth Science, 47(12): 4647-4662(in Chinese with English abstract).
      Wei, R. Q., Zeng, Q. L., Davies, T., et al., 2018. Geohazard Cascade and Mechanism of Large Debris Flows in Tianmo Gully, SE Tibetan Plateau and Implications to Hazard Monitoring. Engineering Geology, 233: 172-182. https://doi.org/10.1016/j.enggeo.2017.12.013
      Wu, G. J., Yao, T. D., Wang, W. C., et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292(in Chinese with English abstract).
      Wu, K. P., Liu, S. Y., Guo, W. Q., 2020. Glacier Variation and Its Response to Climate Change in the Mount Namjagbarwa from 1980 to 2015. Journal of Glaciology and Geocryology, 42(4): 1115-1125(in Chinese with English abstract).
      Wu, G. J., Yao, T. D., Wang, W. C., et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292(in Chinese with English abstract).
      Yang, G. S., Shen, Y. J., Jia, H. L., et al., 2018. Research Progress and Tendency in Characteristics of Multi-Scale Damage Mechanics of Rock under Freezing-Thawing. Chinese Journal of Rock Mechanics and Engineering, 37(3): 545-563(in Chinese with English abstract).
      Yang, Y. C., Gao, D. Y., Li, B. S., 1987. A Preliminary Study of Water Vapor Channels in the Lower Yarlung Tsangpo River Valley. Science China Earth Science, (8): 97-106 (in Chinese).
      Yao, T. D., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663-667. https://doi.org/10.1038/nclimate1580
      Yao, T. D., Xue, Y. K., Chen, D. L., et al., 2019. Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 100(3): 423-444. https://doi.org/10.1175/bams-d-17-0057.1
      Yin, F. L., Han, L. B., Jiang, C. S., et al., 2018. Interaction between the 2017 M6.9 Mainling Earthquake and the 1950 M8.6 Zayu Earthquake and Their Impacts on Surrounding Major Active Faults. Chinese Journal of Geophysics, 61(8): 3185-3197(in Chinese with English abstract).
      Zhang, W. J., 1983. A Surging Glacier in the Nanjiabawa Peak Area, Himalayas. Journal of Glaciology and Geocryology, 5(4): 75-76(in Chinese with English abstract).
      Zhang, W. J., 1985. Some Features of the Surge Glacier in the Mt. namjagbarwa. Journal of Mountain Research, 3(4): 234-238(in Chinese with English abstract).
      Zhang, X. H., Xue, R. Y., Wang, M., et al., 2020. Field Investigation and Analysis on Flood Disasters Due to Baige Landslide Dam Break in Jinsha River. Advanced Engineering Sciences, 52(5): 89-100(in Chinese with English abstract).
      Zhao, B., Li, W. L., Wang, Y. S., et al., 2019. Landslides Triggered by the Ms 6.9 Nyingchi Earthquake, China (18 November 2017): Analysis of the Spatial Distribution and Occurrence Factors. Landslides, 16(4): 765-776. https://doi.org/10.1007/s10346-019-01146-2
      Zhao, C., Fan, X. M., Yang, F., et al., 2020. Movement of Baige Landslide in Jinsha River and Prediction of Potential Unstable Rock Mass. Science Technology and Engineering, 20(10): 3860-3867(in Chinese with English abstract).
      Zhuang, Y., Yin, Y. P., Xing, A. G., et al., 2020. Combined Numerical Investigation of the Yigong Rock Slide-Debris Avalanche and Subsequent Dam-Break Flood Propagation in Tibet, China. Landslides, 17(9): 2217-2229. https://doi.org/10.1007/s10346-020-01449-9
      Zou, Q., Cui, P., Jiang, H., et al., 2020. Analysis of Regional River Blocking by Debris Flows in Response to Climate Change. Science of the Total Environment, 741: 140262. https://doi.org/10.1016/j.scitotenv.2020.140262
      崔鹏, 陈容, 向灵芝, 等, 2014. 气候变暖背景下青藏高原山地灾害及其风险分析. 气候变化研究进展, 10(2): 103-109.
      崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18.
      崔鹏, 郭晓军, 姜天海, 等, 2019. "亚洲水塔"变化的灾害效应与减灾对策. 中国科学院院刊, 34(11): 1313-1321.
      崔圣华, 裴向军, 黄润秋, 2019. 大光包滑坡启动机制: 强震过程滑带非协调变形与岩体动力致损. 岩石力学与工程学报, 38(2): 237-253.
      董汉文, 许志琴, 曹汇, 等, 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933-951. doi: 10.3799/dqkx.2018.701
      冯文凯, 胡云鹏, 谢吉尊, 等, 2016. 顺层震裂斜坡降雨触发灾变机制及稳定性分析: 以三溪村滑坡为例. 岩石力学与工程学报, 35(11): 2197-2207.
      冯玉涛, 肖盛燮, 侯晓丽, 等, 2006. 基于岩崩动力作用下的斜坡稳定性研究. 岩石力学与工程学报, 25(增刊1): 2682-2686.
      李滨, 高杨, 万佳威, 等, 2020. 雅鲁藏布江大峡谷地区特大地质灾害链发育现状及对策. 水电与抽水蓄能, 6(2): 11-14, 35.
      李军, 褚宏亮, 李滨, 等, 2021. 基于高分影像与InSAR解译的西藏林芝则隆弄高位链式地质灾害发育特征分析. 中国地质灾害与防治学报, 32(3): 42-50.
      刘文方, 肖盛燮, 隋严春, 等, 2006. 自然灾害链及其断链减灾模式分析. 岩石力学与工程学报, (s1): 2675-2681.
      刘宇平, D. R. Montgomery, B. Hallet, 等, 2006. 西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件. 第四纪研究, (s1): 52-62.
      乔建平, 黄栋, 杨宗佶, 等, 2012. 汶川地震极震区泥石流物源动储量统计方法讨论. 中国地质灾害与防治学报, 23(2): 1-6.
      申艳军, 陈思维, 张蕾, 等, 2022. 冰雪型地质灾害链高位萌生、动力溃散及物相转化过程剖析. 冰川冻土, 44(2): 643-656.
      汤明高, 许强, 邓文锋, 等, 2022a. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260
      汤明高, 王李娜, 刘昕昕, 等, 2022b. 青藏高原冰崩隐患发育分布规律及危险性. 地球科学, 47(12): 4647-4662. doi: 10.3799/dqkx.2021.074
      邬光剑, 姚檀栋, 王伟财, 等, 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292.
      吴坤鹏, 刘时银, 郭万钦, 2020.1980—2015年南迦巴瓦峰地区冰川变化及其对气候变化的响应. 冰川冻土, 42(4): 1115-1125.
      杨更社, 申艳军, 贾海梁, 等, 2018. 冻融环境下岩体损伤力学特性多尺度研究及进展. 岩石力学与工程学报, 37(3): 545-563.
      杨逸畴, 高登义, 李渤生, 1987. 雅鲁藏布江下游河谷水汽通道初探. 中国科学: 地球科学, (8): 97-106.
      尹凤玲, 韩立波, 蒋长胜, 等, 2018.2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响. 地球物理学报, 61(8): 3185-3197.
      张文敬, 1983. 南迦巴瓦峰的跃动冰川. 冰川冻土, 5(4): 75-76.
      张文敬, 1985. 南迦巴瓦峰跃动冰川的某些特征. 山地研究, 3(4): 234-238.
      张新华, 薛睿瑛, 王明, 等, 2020. 金沙江白格滑坡堰塞坝溃决洪水灾害调查与致灾浅析. 工程科学与技术, 52(5): 89-100.
      赵程, 范宣梅, 杨帆, 等, 2020. 金沙江白格滑坡运动过程分析及潜在不稳定岩体预测. 科学技术与工程, 20(10): 3860-3867.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (529) PDF downloads(69) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return