• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Liu Jingyang, Li Wei, Zhao Wenzhi, Yue Dali, Shu Qinglin, Wang Wurong, Gao Jian, Hou Xiulin, Wu Shenghe, 2024. Evolution of Bars in Braided Rivers Controlled by Discharge Variability. Earth Science, 49(10): 3516-3528. doi: 10.3799/dqkx.2023.143
    Citation: Liu Jingyang, Li Wei, Zhao Wenzhi, Yue Dali, Shu Qinglin, Wang Wurong, Gao Jian, Hou Xiulin, Wu Shenghe, 2024. Evolution of Bars in Braided Rivers Controlled by Discharge Variability. Earth Science, 49(10): 3516-3528. doi: 10.3799/dqkx.2023.143

    Evolution of Bars in Braided Rivers Controlled by Discharge Variability

    doi: 10.3799/dqkx.2023.143
    • Received Date: 2023-04-17
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • The discharge variability controls the formation and evolution of braid bars and influences the internal structure and superimposition of braid bars. However, the control of discharge variability on the developments and evolution of braid bars are unclear. Google Earth software was used to selected 13 river reaches with braided river deposits worldwide, and the discharge data of the selected river reaches are collected from the Global Runoff Data Center (GRDC). Then, the coefficient of annual peak discharge variation (CVQp) was used to study the process and evolution of the braid bars. The results are as follow. (1) In terms of the degree of discharge variability, the braid bar evolution of braided river with lower discharge variability (CVQp < 0.4) mainly develops bar tail deposition and downstream migration. In braided rivers with higher discharge variability (CVQp > 0.4), the braid bar evolves relatively fast. Before and after flood event, the original braid bar is easy to be destroyed and transformed into a new braid bar, and the braid bar burst is common. (2) In a single river, the braid bar distribution of length to width ratio of the braided river with lower discharge variability is relatively concentrated, and the morphology is relatively stable, which is easy to form a relatively-stable braided river. While braided river with higher discharge variability is easy to form classical braided river because of the scattered braid bar distribution of length to width ratio, different morphology and great changes in development position.(3) Downstream accumulation is more common in the evolution of braid bar with lower discharge variability, so it is easy to form compound bars after long time evolution. The flood events of braided rivers with higher discharge variability have a strong influence on the evolution process of the bars, and the braid bar evolution is relatively complex and has poor regularity in the time scale. Clarifying the evolution of braid bars under different discharge conditions can provide guidance for the prediction of sandstone distribution of braided river reservoirs and may provide a basis for the paleo-environment reconstruction and paleo-discharge restoration.

       

    • loading
    • Best, J. L., Ashworth, P. J., Bristow, C. S., et al., 2003. Three-Dimensional Sedimentary Architecture of a Large, Mid-Channel Sand Braid Bar, Jamuna River, Bangladesh. Journal of Sedimentary Research, 73(4): 516-530. https://doi.org/10.1306/010603730516
      Cartigny, M. J. B., Ventra, D., Postma, G., et al., 2014. Morphodynamics and Sedimentary Structures of Bedforms under Supercritical-Flow Conditions: New Insights from Flume Experiments. Sedimentology, 61(3): 712-748. https://doi.org/10.1111/sed.12076
      Castelltort, S., 2018. Empirical Relationship between River Slope and the Elongation of Bars in Braided Rivers: A Potential Tool for Paleoslope Analysis from Subsurface Data. Marine and Petroleum Geology, 96: 544-550. https://doi.org/10.1016/j.marpetgeo.2018.05.008
      Colombera, L., Mountney, N. P., 2019. The Lithofacies Organization of Fluvial Channel Deposits: A Meta-Analysis of Modern Rivers. Sedimentary Geology, 383: 16-40. https://doi.org/10.1016/j.sedgeo.2019.01.011
      Fielding, C. R., 2006. Upper Flow Regime Sheets, Lenses and Scour Fills: Extending the Range of Architectural Elements for Fluvial Sediment Bodies. Sedimentary Geology, 190(1-4): 227-240. https://doi.org/10.1016/j.sedgeo.2006.05.009
      Fielding, C. R., Alexander, J., Allen, J. P., 2018. The Role of Discharge Variability in the Formation and Preservation of Alluvial Sediment Bodies. Sedimentary Geology, 365: 1-20. https://doi.org/10.1016/j.sedgeo.2017.12.022
      Fielding, C. R., Allen, J. P., Alexander, J., et al., 2009. Facies Model for Fluvial Systems in the Seasonal Tropics and Subtropics. Geology, 37(7): 623-626. https://doi.org/10.1130/g25727a.1
      Froude, M. J., Alexander, J., Barclay, J., et al., 2017. Interpreting Flash Flood Palaeoflow Parameters from Antidunes and Gravel Lenses: An Example from Montserrat, West Indies. Sedimentology, 64(7): 1817-1845. https://doi.org/10.1111/sed.12375
      Gan, Q., 2021. Interaction and Sedimentary Process between the Evolution of the Bar and Bifurcation of the River in the Far-Source Fine-Grained Braided River: Numerical Simulation Analysis Inspired by Modern Deposition. Bulletin of Geological Science and Technology, 40(1): 14-26(in Chinese with English abstract).
      Gibling, M. R., 2006. Width and Thickness of Fluvial Channel Bodies and Valley Fills in the Geological Record: A Literature Compilation and Classification. Journal of Sedimentary Research, 76(5): 731-770. https://doi.org/10.2110/jsr.2006.060
      Hansford, M. R., Plink-Björklund, P., 2020. River Discharge Variability as the Link between Climate and Fluvial Fan Formation. Geology, 48(10): 952-956. https://doi.org/10.1130/g47471.1
      Hansford, M. R., Plink-Björklund, P., Jones, E. R., 2020. Global Quantitative Analyses of River Discharge Variability and Hydrograph Shape with Respect to Climate Types. Earth-Science Reviews, 200: 102977. https://doi.org/10.1016/j.earscirev.2019.102977
      Huang, W. S., 2022. Multiple-Point Geostatistical Modeling of Braided Channel Reservoir with Constraints by 3D Seismic Data: A Case Study of M Block in Venezuela. Earth Science, 47(11): 4033-4045(in Chinese with English abstract).
      Kleinhans, M. G., van den Berg, J. H., 2011. River Channel and Bar Patterns Explained and Predicted by an Empirical and a Physics-Based Method. Earth Surface Processes and Landforms, 36(6): 721-738. https://doi.org/10.1002/esp.2090
      Latrubesse, E. M., Stevaux, J. C., Sinha, R., 2005. Tropical Rivers. Geomorphology, 70(3/4): 187-206. https://doi.org/10.1016/j.geomorph.2005.02.005
      Li, Z. W., Lu, H. Y., Gao, P., et al., 2020. Characterizing Braided Rivers in Two Nested Watersheds in the Source Region of the Yangtze River on the Qinghai-Tibet Plateau. Geomorphology, 351: 106945. https://doi.org/10.1016/j.geomorph.2019.106945
      Li, S. L., Ma, S. P., Zhou, L. W., et al., 2022. Main Influencing Factors of Braided-Meander Transition and Coexistence Characteristics and Implications of Ancient Fluvial Sedimentary Environment Reconstruction. Earth Science, 47(11): 3960-3976(in Chinese with English abstract).
      Li, W., Colombera, L., Yue, D. L., et al., 2023. Controls on the Morphology of Braided Rivers and Braid Bars: An Empirical Characterization of Numerical Models. Sedimentology, 70(1): 259-279. https://doi.org/10.1111/sed.13040
      Li, W., Yue, D. L., Li, J., et al., 2022. Variable Architecture Models of Fluvial Reservoir Controlled by Base-Level Cycle: A Case Study of Jurassic Outcrop in Datong Basin. Earth Science, 47(11): 3977-3988(in Chinese with English abstract).
      Manna, M. O., dos Santos Scherer, C. M., Bállico, M. B., et al., 2021. Changes in Fluvial Architecture Induced by Discharge Variability, Jaicós Formation (Silurian-Devonian), Parnaíba Basin, Brazil. Sedimentary Geology, 420: 105924. https://doi.org/10.1016/j.sedgeo.2021.105924
      Martin, R. L., Jerolmack, D. J., 2013. Origin of Hysteresis in Bed Form Response to Unsteady Flows. Water Resources Research, 49(3): 1314-1333. https://doi.org/10.1002/wrcr.20093
      Nicholas, A. P., Smith G. H. S., Amsler, M. L., et al., 2016. The Role of Discharge Variability in Determining Alluvial Stratigraphy. Geology, 44(1): 3-6. https://doi.org/10.1130/g37215.1
      North, C. P., Warwick, G. L., 2007. Fluvial Fans: Myths, Misconceptions, and the End of the Terminal-Fan Model. Journal of Sedimentary Research, 77(9): 693-701. https://doi.org/10.2110/jsr.2007.072
      Plink-Björklund, P., 2015. Morphodynamics of Rivers Strongly Affected by Monsoon Precipitation: Review of Depositional Style and Forcing Factors. Sedimentary Geology, 323: 110-147. https://doi.org/10.1016/j.sedgeo.2015.04.004
      Qiao, Y. P., Qiu, L. W., Song, Z. Y., et al., 2020. Research and Modeling of Interlayers in Distal Sandy Braided River Reservoir: A Case Study of Upper Guantao Formation, Block 6 in Gudong Oilfield, Zhanhua Sag. Journal of Jilin University (Earth Science Edition), 50(1): 41-51(in Chinese with English abstract).
      Ren, X. X., Hou, J. G., Liu, Y. M., et al., 2018. Architectural Characterization and a Distribution Model of Lithology near the Boundary Surfaces of Different Orders in a Sandy Braided River: A Case Study from the Jurassic Sandy Braided-River Outcrops in the Datong Basin, Shanxi Province. Petroleum Science Bulletin, 3(3): 245-261(in Chinese with English abstract).
      Romans, B. W., Castelltort, S., Covault, J. A., et al., 2016. Environmental Signal Propagation in Sedimentary Systems across Timescales. Earth-Science Reviews, 153: 7-29. https://doi.org/10.1016/j.earscirev.2015.07.012
      Skelly, R. L., Bristow, C. S., Ethridge, F. G., 2003. Architecture of Channel-Belt Deposits in an Aggrading Shallow Sandbed Braided River: The Lower Niobrara River, Northeast Nebraska. Sedimentary Geology, 158(3-4): 249-270. https://doi.org/10.1016/S0037-0738(02)00313-5
      Sun, T. J., Mu, L. X., Wu, X. H., et al., 2014. A Quantitative Method for Architectural Characterization of Sandy Braided-River Reservoirs: Taking Hegli Oilfield of Muglad Basin in Sudan as an Example. Acta Petrolei Sinica, 35(4): 715-724(in Chinese with English abstract).
      Tal, M., Paola, C., 2010. Effects of Vegetation on Channel Morphodynamics: Results and Insights from Laboratory Experiments. Earth Surface Processes and Landforms, 35(9): 1014-1028. https://doi.org/10.1002/esp.1908
      Tamminga, A. D., Eaton, B. C., Hugenholtz, C. H., 2015. UAS-Based Remote Sensing of Fluvial Change Following an Extreme Flood Event. Earth Surface Processes and Landforms, 40(11): 1464-1476. https://doi.org/10.1002/esp.3728
      Wang, J. L., Ren, J. S., 2001. Characteristics of Modern Fluvial Deposits in the Lower Reaches of the Nenjiang River, Northeast China. Geological Review, 47(2): 193-199, 7(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2001.02.013
      Whipple, K. X., 2009. Landscape Texture Set to Scale. Nature, 460: 468-469. https://doi.org/10.1038/460468a
      Wilbers, A. W. E., Ten Brinke, W. B. M., 2003. The Response of Subaqueous Dunes to Floods in Sand and Gravel Bed Reaches of the Dutch Rhine. Sedimentology, 50(6): 1013-1034. https://doi.org/10.1046/j.1365-3091.2003.00585.x
      Wu, X. J., Su, H. B., Zhang, S. J., et al., 2020. Architecture Anatomy and Hierarchical Modeling of Sand-Gravel Braided River Reservoirs: A Case Study of Zhong32 Wells Area, Qigu Formation Reservoir, Fengceng Oilfield. Acta Sedimentologica Sinica, 38(5): 933-945(in Chinese with English abstract).
      Zhang C. M., Zhang S. F., Li S. H., et al., 2004. Advances in Chinese Fluvial Sedimentology from 1983 to 2003. Acta Sedimentologica Sinica, 22(2): 183-192 (in Chinese with Englishabstract). doi: 10.3969/j.issn.1000-0550.2004.02.001
      Zhang, K., Wu, S. H., Feng, W. J., et al., 2018. Discussion on Evolution of Bar in Sandy Braided River: Insights from Sediment Numerical Simulation and Modern Bar. Acta Sedimentologica Sinica, 36(1): 81-91(in Chinese with English abstract).
      Zhang, X. G., Zhang, Y. H., Zhang, T., et al., 2020. Analysis of Braided Bar Evolution Based on Numerical Simulation of Deposition Process. Journal of China University of Petroleum (Edition of Natural Science), 44(2): 1-9(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2020.02.001
      甘泉, 2021. 远源细粒辫状河心滩坝演化与河流分叉的交互沉积过程: 现代沉积启示与数值模拟分析. 地质科技通报, 40(1): 14-26.
      黄文松, 2022. 三维地震约束辫状河储层的多点统计建模研究: 以委内瑞拉M区块为例. 地球科学, 47(11): 4033-4045. doi: 10.3799/dqkx.2022.203
      李胜利, 马水平, 周练武, 等, 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学, 47(11): 3960-3976. doi: 10.3799/dqkx.2022.013
      李伟, 岳大力, 李健, 等, 2022. 基准面旋回控制的河流相储层差异构型模式: 以山西大同侏罗系露头为例. 地球科学, 47(11): 3977-3988. doi: 10.3799/dqkx.2022.132
      乔雨朋, 邱隆伟, 宋子怡, 等, 2020. 远源砂质辫状河储集层内部隔夹层研究与地质建模: 以沾化凹陷孤东油田六区馆上段为例. 吉林大学学报(地球科学版), 50(1): 41-51.
      任晓旭, 侯加根, 刘钰铭, 等, 2018. 砂质辫状河不同级次构型表征及其界面控制下的岩性分布模式: 以山西大同盆地侏罗系辫状河露头为例. 石油科学通报, 3(3): 245-261.
      孙天建, 穆龙新, 吴向红, 等, 2014. 砂质辫状河储层构型表征方法: 以苏丹穆格莱特盆地Hegli油田为例. 石油学报, 35(4): 715-724.
      王俊玲, 任纪舜, 2001. 嫩江下游现代河流沉积特征. 地质论评, 47(2): 193-199, 7.
      吴小军, 苏海斌, 张士杰, 等, 2020. 砂砾质辫状河储层构型解剖及层次建模: 以新疆油田重32井区齐古组油藏为例. 沉积学报, 38(5): 933-945.
      张昌民, 张尚锋, 李少华, 等, 2004. 中国河流沉积学研究20年. 沉积学报, 22(2): 183-192.
      张可, 吴胜和, 冯文杰, 等, 2018. 砂质辫状河心滩坝的发育演化过程探讨: 沉积数值模拟与现代沉积分析启示. 沉积学报, 36(1): 81-91.
      张宪国, 张育衡, 张涛, 等, 2020. 基于沉积数值模拟的辫状河心滩演化. 中国石油大学学报(自然科学版), 44(2): 1-9.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (620) PDF downloads(82) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return