Citation: | Yi Wei, Yu Bin, Hu Xiewen, Hu Jianchun, Liu Fengyan, Wang Yan, 2024. On Early Warning of First Debris Flow after a Wildfire. Earth Science, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145 |
Cannon, S. H., 2000. Debris-Flow Response of Southern California Catchments Burned by Wildfire. In Proceedings of Second International Conference on Debris-Flow Hazards Mitigation. Brookfield, VT, 45-52.
|
Cannon, S. H., 2001. Debris-Flow Generation from Recently Burned Watersheds. Environmental and Engineering Geoscience, 7(4): 321-341. https://doi.org/10.2113/gseegeosci.7.4.321
|
Cannon, S. H., Gartner, J. E., 2007. Wildfire-Related Debris Flow from a Hazards Perspective. In: Jakob, M., Hungr, O., eds., Debris-flow Hazards and Related Phenomena. Springer, Berlin, Heidelberg: 363-385.
|
Cannon, S. H., Gartner, J. E., Wilson, R. C., et al., 2008. Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Areas in Southwestern Colorado and Southern California. Geomorphology, 96(3-4): 250-269. https://doi.org/10.1016/j.geomorph.2007.03.019
|
Cerdà, A., 1998. Changes in Overland Flow and Infiltration after a Rangeland Fire in a Mediterranean Scrubland. Hydrological Processes, 12(7): 1031-1042. https://doi.org/10.1002/(sici)1099-1085(19980615)12: 71031: aid-hyp636>3.3.co;2-m doi: 10.1002/(sici)1099-1085(19980615)12:71031:aid-hyp636>3.3.co;2-m
|
Dekker, L. W., Ritsema, C. J., 1994. How Water Moves in a Water Repellent Sandy Soil. 1. Potential and Actual Water Repellency. Water Resources Research, 30(9): 2507-2517. https://doi.org/10.1029/94WR00749
|
Doerr, S. H., Ferreira, A. J. D., Walsh, R. P. D., et al., 2003. Soil Water Repellency as a Potential Parameter in Rainfall-Runoff Modelling: Experimental Evidence at Point to Catchment Scales from Portugal. Hydrological Processes, 17(2): 363-377. https://doi.org/10.1002/hyp.1129
|
Doerr, S. H., Shakesby, R. A., MacDonald, L. H., 2009. Soil Water Repellency: A Key Factor in Post-Fire Erosion? In: Cerda', A., Robichaud, P. R., eds., Restoration Strategies after Forest Fire. Science Publishers, Enfield, 197-223.
|
Fan, G. S., Xing, R. X., Zhang, M. B., 2012. Experimental Study on Permeability of the Sandy Gravel Media with Different Gradation. Journal of Taiyuan University of Technology, 43(3): 373-378(in Chinese with English abstract). doi: 10.3969/j.issn.1007-9432.2012.03.028
|
Gonzales, D. A., Stahr, D. W., Kirkham, R. M., 2002. Geologic Map of the Hermosa Quadrangle, La Plata County, Colorado. Colorado Geological Survey Open-File Report 02-1.
|
Gabet, E. J., 2003. Post-Fire Thin Debris Flows: Sediment Transport and Numerical Modelling. Earth Surface Processes and Landforms, 28(12): 1341-1348. https://doi.org/10.1002/esp.590
|
Gartner, J. E., Santi, P. M., Cannon, S. H., 2015. Predicting Locations of Post-Fire Debris-Flow Erosion in the San Gabriel Mountains of Southern California. Natural Hazards, 77(2): 1305-1321. https://doi.org/10.1007/s11069-015-1656-3
|
Gartner, J. E., Cannon, S. H., Santi, P. M., 2014. Empirical Models for Predicting Volumes of Sediment Deposited by Debris Flows and Sediment-Laden Floods in the Transverse Ranges of Southern California. Engineering Geology, 176: 45-56. https://doi.org/10.1016/j.enggeo.2014.04.008
|
Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2008. The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5(1): 3-17. https://doi.org/10.1007/s10346-007-0112-1
|
Hu, X. W., Jin, T., Yin, W. Q., et al., 2020. The Characteristics of Forest Fire Burned Area and Susceptibility Assessment of Post-Fire Debris Flow in Jingjiu Township, Xichang City. Journal of Engineering Geology, 28(4): 762-771(in Chinese with English abstract).
|
Hu, X. W., Wang, Y., Yang, Y., 2018. Research Actuality and Evolution Mechanism of Post-Fire Debris Flow. Journal of Engineering Geology, 26(6): 1562-1573(in Chinese with English abstract).
|
Kean, J. W., Staley, D. W., Cannon, S. H., 2011. In Situ Measurements of Post-Fire Debris Flows in Southern California: Comparisons of the Timing and Magnitude of 24 Debris-Flow Events with Rainfall and Soil Moisture Conditions. Journal of Geophysical Research Earth Surface, 116(4): F4019. https://doi.org/10.1029/2011JF002005
|
Key, C. H., Benson, N. C., 2006. Landscape Assessment (LA) Sampling and Analysis Methods. In: Lutes, D. C., Keane, R. E., Caratti, J. F., eds., FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Co., 1-55.
|
Lavee, H., Kutiel, P., Segev, M., et al., 1995. Effect of Surface Roughness on Runoff and Erosion in a Mediterranean Ecosystem: The Role of Fire. Geomorphology, 11(3): 227-234. https://doi.org/10.1016/0169-555X(94)00059-Z
|
Lemmnitz, C., Kuhnert, M., Bens, O., et al., 2008. Spatial and Temporal Variations of Actual Soil Water Repellency and Their Influence on Surface Runoff. Hydrological Processes, 22(12): 1976-1984. https://doi.org/10.1002/hyp.6782
|
Liu, T. Q., Wang, B. G., Zhang, J. S., et al., 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682(in Chinese with English abstract).
|
Mataix-Solera, J., Cerdà, A., Arcenegui, V., et al., 2011. Fire Effects on Soil Aggregation: A Review. Earth-Science Reviews, 109(1/2): 44-60. https://doi.org/10.1016/j.earscirev.2011.08.002
|
Meyer, G. A., Wells, S. G., 1997. Fire-Related Sedimentation Events on Alluvial Fans, Yellowstone National Park, U. S. A.. SEPM Journal of Sedimentary Research, 67: 776-791. https://doi.org/10.1306/d426863a-2b26-11d7-8648000102c1865d
|
McPhee, J. A., 1989. The Control of Nature. Farrar, Straus and Giroux, New York.
|
Min, L. L., Yu, J. J., 2010. Progress in the Research of Soil Water Repellency and Its Influences on Overland Flow Generation. Progress in Geography, 29(7): 855-860(in Chinese with English abstract).
|
Mitchell, P. B., Humphreys, G. S., 1987. Litter Dams and Microterraces Formed on Hillslopes Subject to Rainwash in the Sydney Basin, Australia. Geoderma, 39(4): 331-357. https://doi.org/10.1016/0016-7061(87)90052-8
|
Nyman, P., Sheridan, G. J., Smith, H. G., et al., 2011. Evidence of Debris Flow Occurrence after Wildfire in Upland Catchments of South-East Australia. Geomorphology, 125(3): 383-401. https://doi.org/10.1016/j.geomorph.2010.10.016
|
Nyman, P., Smith, H., Sherwin, C., et al., 2015. Predicting Sediment Delivery from Debris Flows after Wildfire. Geomorphology, 250: 173-186. https://doi.org/10.1016/j.geomorph.2015.08.023
|
Parise, M., Cannon, S. H., 2012. Wildfire Impacts on the Processes That Generate Debris Flows in Burned Watersheds. Natural Hazards, 61(1): 217-227. https://doi.org/10.1007/s11069-011-9769-9
|
Shi, Z. M., Wu, B., Zheng, H. C., et al., 2022. State of the Art on Prevention and Control Measures and Impact Model for Debris Flow. Earth Science, 47(12): 4339-4349(in Chinese with English abstract).
|
Staley, D. M., Kean, J. W., Cannon, S. H., et al., 2013. Objective Definition of Rainfall Intensity-Duration Thresholds for the Initiation of Post-Fire Debris Flows in Southern California. Landslides, 10(5): 547-562. https://doi.org/10.1007/s10346-012-0341-9
|
Tessler, N., Wittenberg, L., Malkinson, D., et al., 2008. Fire Effects and Short-Term Changes in Soil Water Repellency-Mt. Carmel, Israel. CATENA, 74(3): 185-191. https://doi.org/10.1016/j.catena.2008.03.002
|
Tie, Y. B., Xu, R. G., Liu, H., et al., 2020. Study on the Characteristics and Formation Mechanism of the Typical Post-Fire Debris Flow in Lushan Area of Xichang City: A Case Study of 3# Branch on the Left Bank of Xiangshuigou. Geological Survey of China, 7(3): 82-88(in Chinese with English abstract).
|
Wang, Y., Hu, X. W., Jin, T., et al., 2019. Material Initiation of Debris Flow Generation Processes after Hillside Fires. Journal of Engineering Geology, 27(6): 1415-1423(in Chinese with English abstract).
|
Yin, C. J., Long, Y. Q., 2021. Study on the Rainwater Infiltration Law of Unsaturated Silt under Heavy Rain. Journal of Railway Science and Engineering, 18(1): 81-86(in Chinese with English abstract).
|
Yu, B., Zhu, Y., Wang, T., et al., 2014. Prediction Model for Occurrence of Debris Flows in Channels with Runoff Initiation Mechanism. Journal of Engineering Geology, 22(3): 450-455(in Chinese with English abstract).
|
Yu, B., Zhu, Y., Wang, T., et al., 2015. Research on the 10-Minute Rainfall Prediction Model for Debris Flows. Advances in Water Science, 26(3): 347-355(in Chinese with English abstract).
|
樊贵盛, 邢日县, 张明斌, 2012. 不同级配砂砾石介质渗透系数的试验研究. 太原理工大学学报, 43(3): 373-378. doi: 10.3969/j.issn.1007-9432.2012.03.028
|
胡卸文, 金涛, 殷万清, 等, 2020. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价. 工程地质学报, 28(4): 762-771.
|
胡卸文, 王严, 杨瀛, 2018. 火后泥石流成灾特点及研究现状. 工程地质学报, 26(6): 1562-1573.
|
刘天奇, 汪丙国, 张钧帅, 等, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
|
闵雷雷, 于静洁, 2010. 土壤斥水性及其对坡面产流的影响研究进展. 地理科学进展, 29(7): 855-860.
|
石振明, 吴彬, 郑鸿超, 等, 2022. 泥石流防治措施与冲击力研究进展. 地球科学, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
|
铁永波, 徐如阁, 刘洪, 等, 2020. 西昌市泸山地区典型火后泥石流特征与成因机制研究: 以响水沟左岸3#支沟为例. 中国地质调查, 7(3): 82-88.
|
王严, 胡卸文, 金涛, 等, 2019. 火后泥石流形成过程的物源启动模式研究. 工程地质学报, 27(6): 1415-1423.
|
印长俊, 龙勇齐, 2021. 强降雨条件下非饱和粉土雨水渗透规律研究. 铁道科学与工程学报, 18(1): 81-86.
|
余斌, 朱渊, 王涛, 等, 2014. 沟床起动型泥石流预报研究. 工程地质学报, 22(3): 450-455.
|
余斌, 朱渊, 王涛, 等, 2015. 沟床起动型泥石流的10 min降雨预报模型. 水科学进展, 26(3): 347-355.
|