• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Xu Zikuang, Xu Shiguang, Zhang Shitao, 2024. Using Stochastic Inverse Modeling Method to Obtain Probabilistic Capture Zones of a Spring in a Complex Fracture Aquifer. Earth Science, 49(10): 3723-3735. doi: 10.3799/dqkx.2023.148
    Citation: Xu Zikuang, Xu Shiguang, Zhang Shitao, 2024. Using Stochastic Inverse Modeling Method to Obtain Probabilistic Capture Zones of a Spring in a Complex Fracture Aquifer. Earth Science, 49(10): 3723-3735. doi: 10.3799/dqkx.2023.148

    Using Stochastic Inverse Modeling Method to Obtain Probabilistic Capture Zones of a Spring in a Complex Fracture Aquifer

    doi: 10.3799/dqkx.2023.148
    • Received Date: 2022-08-16
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • Generating a series of stochastic models (realizations) by applying stochastic inverse modeling method is sometimes an efficient way to improve hydrogeological cognition accuracy of a site, such as obtaining a more clarity aquifer structure or a probabilistic capture zone of a spring. However, the borehole data size often cannot meet the requirements of stochastic modeling in a general project. Considering geological analysis result and borehole data, it may be a rational and effective method to translate geophysical prospecting (TEM) points into virtual boreholes to solve the data shortage problem. Using the PEST program, stochastic models established through practical boreholes and virtual boreholes can be screened with groundwater level data as the reference. The stratigraphic structure of the filtered models is then checked artificially to guarantee model geological rationality. In this paper, a total of 503 realizations are generated by using a transition probability Markov chain (T-PORGS) based on 74 data points (including virtual boreholes). With data from 9 groundwater observation points within the site as a benchmark, 67 models that effectively describe the hydrogeological characteristics of the site are selected through PEST. Finally, the probabilistic capture zones of the target spring in a fracture aquifer are calculated from these selected models. This modeling process enables stochastic modeling at a site scale even in the absence of sufficient borehole data, providing valuable hydrogeological information for the site.

       

    • loading
    • Amiri, V., Sohrabi, N., Li, P. Y., et al., 2023. Estimation of Hydraulic Conductivity and Porosity of a Heterogeneous Porous Aquifer by Combining Transition Probability Geostatistical Simulation, Geophysical Survey, and Pumping Test Data. Environment, Development and Sustainability, 25(8): 7713-7736. https://doi.org/10.1007/s10668-022-02368-6
      Anderman, E. R., Hill, M. C., 2000. MODFLOW-2000, the U. S. Geological Survey Modular Ground-Water Model Documentation of the Hydrogeologic-Unit Flow (HUF) Package, Open-File Report 00-342. USGS Numbered Series, Denver.
      Banta, E. R., Provost, A. M., 2008. User Guide for HUFPrint, a Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW. U. S. Geological Survey, U. S. Department of the Interior.
      Carle, S. F., 1999. T-PROGS: Transition Probability Geostatistical Software, Version 2.1. Department of Land. Air and Water Resources, University of California, Davis.
      Carle, S. F., Fogg, G. E., 1996. Transition Probability-Based Indicator Geostatistics. Mathematical Geology, 28(4): 453-476. https://doi.org/10.1007/BF02083656
      Carle, S. F., Fogg, G. E., 1997. Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7): 891-918. https://doi.org/10.1023/A: 1022303706942 doi: 10.1023/A:1022303706942
      Doherty, J., Brebber, L., Whyte, P., 2004. PEST, Model-Independent Parameter Estimation-User Manual. 5th Edition. Watermark Numerical Computing, Brisbane, Australia.
      Gao, W., Zhou, F., Dong, Y. J., et al., 2014. PEST-Based Multi-Objective Automatic Calibration of Hydrologic Parameters for HSPF Model. Journal of Natural Resources, 29(5): 855-867(in Chinese with English abstract).
      Goovaerts, P., 2001. Geostatistical Modelling of Uncertainty in Soil Science. Geoderma, 103(1/2): 3-26. https://doi.org/10.1016/s0016-7061(01)00067-2
      He, F., Wu, J. C., 2003. Markov Chain-Based Multi-Indicator Geostatistical Model. Hydrogeology and Engineering Geology, 30(5): 28-32(in Chinese with English abstract).
      Jarray, H., Zammouri, M., Ouessar, M., 2020. Assessment of Groundwater Salinization Using PEST and Sensitivity Analysis: Case of Zeuss-Koutine and Mio-Plio-Quaternary Aquifers. Arabian Journal of Geosciences, 13(19): 999. https://doi.org/10.1007/s12517-020-05976-6
      Koch, J., He, X., Jensen, K. H., et al., 2014. Challenges in Conditioning a Stochastic Geological Model of a Heterogeneous Glacial Aquifer to a Comprehensive Soft Data Set. Hydrology and Earth System Sciences, 18(8): 2907-2923. https://doi.org/10.5194/hess-18-2907-2014
      Krumbein, W. C., 1968. Fortran Ⅳ Program for Simulation of Transgression and Regression with Continuous-Time Markov Models. University of Kansas State Geological Survey, 1-18.
      Langousis, A., Kaleris, V., Kokosi, A., et al., 2018. Markov Based Transition Probability Geostatistics in Groundwater Applications: Assumptions and Limitations. Stochastic Environmental Research and Risk Assessment, 32(7): 2129-2146. https://doi.org/10.1007/s00477-017-1504-y
      Lee, S. Y., Carle, S. F., Fogg, G. E., 2007. Geologic Heterogeneity and a Comparison of Two Geostatistical Models: Sequential Gaussian and Transition Probability-Based Geostatistical Simulation. Advances in Water Resources, 30(9): 1914-1932. https://doi.org/10.1016/j.advwatres.2007.03.005
      Lin, C., Harbaugh, J. W., 1984. Graphic Display of Two- and Three-Dimensional Markov Computer Models in Geology. Van Nostrand Reinhold, New York.
      Luo, F., Du, S. H., Huang, Y., et al., 2022. Determining the Boundary of the Jiali-Palongzangbu Tectonic Mélange Belt Based on Airborne Geophysical Prospecting and Its Engineering Geological Risk. Earth Science, 47(3): 779-793 (in Chinese with English abstract).
      Ma, L., Deng, H., Yan, Y. S., et al., 2022. Hydrofacies Simulation Based on Transition Probability Geostatistics Using Electrical Resistivity Tomography and Borehole Data. Hydrogeology Journal, 30(7): 2117-2134. https://doi.org/10.1007/s10040-022-02539-9
      Manchuk, J. G., Deutsch, C. V., 2012. A Flexible Sequential Gaussian Simulation Program: USGSIM. Computers & Geosciences, 41: 208-216. https://doi.org/10.1016/j.cageo.2011.08.013
      Marquardt, D. W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-441. https://doi.org/10.1137/0111030
      Park, Y. J., Sudicky, E. A., McLaren, R. G., et al., 2004. Analysis of Hydraulic and Tracer Response Tests within Moderately Fractured Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 40(12): W12404. https://doi.org/10.1029/2004wr003188
      Piccinini, L., Fabbri, P., Pola, M., et al., 2017. An Example of Aquifer Heterogeneity Simulation to Modeling Well-Head Protection Areas. Italian Journal of Engineering Geology and Environment, Special Issue: 103-115. doi: 10.4408/IJEGE.2017-01.S-10
      Politis, D. N., 1994. Markov Chains in Many Dimensions. Advances in Applied Probability, 26(3): 756-774. https://doi.org/10.2307/1427819
      Siena, M., Riva, M., 2020. Impact of Geostatistical Reconstruction Approaches on Model Calibration for Flow in Highly Heterogeneous Aquifers. Stochastic Environmental Research and Risk Assessment, 34(10): 1591-1606. https://doi.org/10.1007/s00477-020-01865-2
      Sun, Q., Shao, J. L., Wang, Y. L., et al., 2019. Research on Appropriate Borehole Density for Establishing Reliable Geological Model Based on Quantitative Uncertainty Analysis. Arabian Journal of Geosciences, 12(13): 410. https://doi.org/10.1007/s12517-019-4533-7
      Sun, Q., Shao, J. L., Cui, Y. L., et al., 2019. Numerical Simulations of Groundwater Based on Three-Dimensional Stochastic Hydrogeologic Structure Model: A Case Study from West Liaohe Plain. Geoscience, 33(2): 451-460(in Chinese with English abstract).
      Teramoto, E. H., Engelbrecht, B. Z., Gonçalves, R. D., et al., 2021. Probabilistic Backward Location for the Identification of Multi-Source Nitrate Contamination. Stochastic Environmental Research and Risk Assessment, 35(4): 941-954. https://doi.org/10.1007/s00477-020-01966-y
      Wang, X. C., Deng, X. H., Chen, X. D., et al., 2021. Application Effect of TEM Based on High Temperature Superconducting Sensor in Qingchengzi Ore-Concentrated Area. Earth Science, 46(5): 1871-1880(in Chinese with English abstract).
      Xie, J., Liu, Y., Li, X. Q., et al., 2021. The Application of Opposing Coils Transient Electromagnetics in the Detection of Karst Subsidence Area. Coal Geology & Exploration, 49(3): 212-218, 226(in Chinese with English abstract).
      Yao, C. C., Wei, J. H., 2015. Case Study of Parameter Auto-Calibration of Distributed Parameter Model Based on Condor Algorithm. South-to-North Water Transfers and Water Science & Technology, 13(4): 733-736, 770(in Chinese with English abstract).
      高伟, 周丰, 董延军, 等, 2014. 基于PEST的HSPF水文模型多目标自动校准研究. 自然资源学报, 29(5): 855-867.
      何芳, 吴吉春, 2003. 基于马尔可夫链的多元指示地质统计模型. 水文地质工程地质, 30(5): 28-32.
      罗锋, 杜世回, 黄勇, 等, 2022. 基于航空物探的嘉黎-帕隆藏布构造混杂岩带边界厘定及其工程地质风险. 地球科学, 47(3): 779-793. doi: 10.3799/dqkx.2022.028
      孙倩, 邵景力, 崔亚莉, 等, 2019. 基于三维随机水文地质结构模型的地下水流数值模拟: 以西辽河平原为例. 现代地质, 33(2): 451-460.
      王兴春, 邓晓红, 陈晓东, 等, 2021. 基于高温超导的瞬变电磁法在青城子矿集区的应用. 地球科学, 46(5): 1871-1880. doi: 10.3799/dqkx.2020.383
      谢嘉, 刘洋, 李兴强, 等, 2021. 等值反磁通瞬变电磁法在岩溶塌陷区探测应用. 煤田地质与勘探, 49(3): 212-218, 226.
      姚晨晨, 魏加华, 2015. 基于Condor的模型参数自动识别实例研究. 南水北调与水利科技, 13(4): 733-736, 770.
    • dqkxzx-49-10-3723-附图2.zip
      dqkxzx-49-10-3723-附图1.zip
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (254) PDF downloads(28) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return