Citation: | Xu Zikuang, Xu Shiguang, Zhang Shitao, 2024. Using Stochastic Inverse Modeling Method to Obtain Probabilistic Capture Zones of a Spring in a Complex Fracture Aquifer. Earth Science, 49(10): 3723-3735. doi: 10.3799/dqkx.2023.148 |
Amiri, V., Sohrabi, N., Li, P. Y., et al., 2023. Estimation of Hydraulic Conductivity and Porosity of a Heterogeneous Porous Aquifer by Combining Transition Probability Geostatistical Simulation, Geophysical Survey, and Pumping Test Data. Environment, Development and Sustainability, 25(8): 7713-7736. https://doi.org/10.1007/s10668-022-02368-6
|
Anderman, E. R., Hill, M. C., 2000. MODFLOW-2000, the U. S. Geological Survey Modular Ground-Water Model Documentation of the Hydrogeologic-Unit Flow (HUF) Package, Open-File Report 00-342. USGS Numbered Series, Denver.
|
Banta, E. R., Provost, A. M., 2008. User Guide for HUFPrint, a Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW. U. S. Geological Survey, U. S. Department of the Interior.
|
Carle, S. F., 1999. T-PROGS: Transition Probability Geostatistical Software, Version 2.1. Department of Land. Air and Water Resources, University of California, Davis.
|
Carle, S. F., Fogg, G. E., 1996. Transition Probability-Based Indicator Geostatistics. Mathematical Geology, 28(4): 453-476. https://doi.org/10.1007/BF02083656
|
Carle, S. F., Fogg, G. E., 1997. Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7): 891-918. https://doi.org/10.1023/A: 1022303706942 doi: 10.1023/A:1022303706942
|
Doherty, J., Brebber, L., Whyte, P., 2004. PEST, Model-Independent Parameter Estimation-User Manual. 5th Edition. Watermark Numerical Computing, Brisbane, Australia.
|
Gao, W., Zhou, F., Dong, Y. J., et al., 2014. PEST-Based Multi-Objective Automatic Calibration of Hydrologic Parameters for HSPF Model. Journal of Natural Resources, 29(5): 855-867(in Chinese with English abstract).
|
Goovaerts, P., 2001. Geostatistical Modelling of Uncertainty in Soil Science. Geoderma, 103(1/2): 3-26. https://doi.org/10.1016/s0016-7061(01)00067-2
|
He, F., Wu, J. C., 2003. Markov Chain-Based Multi-Indicator Geostatistical Model. Hydrogeology and Engineering Geology, 30(5): 28-32(in Chinese with English abstract).
|
Jarray, H., Zammouri, M., Ouessar, M., 2020. Assessment of Groundwater Salinization Using PEST and Sensitivity Analysis: Case of Zeuss-Koutine and Mio-Plio-Quaternary Aquifers. Arabian Journal of Geosciences, 13(19): 999. https://doi.org/10.1007/s12517-020-05976-6
|
Koch, J., He, X., Jensen, K. H., et al., 2014. Challenges in Conditioning a Stochastic Geological Model of a Heterogeneous Glacial Aquifer to a Comprehensive Soft Data Set. Hydrology and Earth System Sciences, 18(8): 2907-2923. https://doi.org/10.5194/hess-18-2907-2014
|
Krumbein, W. C., 1968. Fortran Ⅳ Program for Simulation of Transgression and Regression with Continuous-Time Markov Models. University of Kansas State Geological Survey, 1-18.
|
Langousis, A., Kaleris, V., Kokosi, A., et al., 2018. Markov Based Transition Probability Geostatistics in Groundwater Applications: Assumptions and Limitations. Stochastic Environmental Research and Risk Assessment, 32(7): 2129-2146. https://doi.org/10.1007/s00477-017-1504-y
|
Lee, S. Y., Carle, S. F., Fogg, G. E., 2007. Geologic Heterogeneity and a Comparison of Two Geostatistical Models: Sequential Gaussian and Transition Probability-Based Geostatistical Simulation. Advances in Water Resources, 30(9): 1914-1932. https://doi.org/10.1016/j.advwatres.2007.03.005
|
Lin, C., Harbaugh, J. W., 1984. Graphic Display of Two- and Three-Dimensional Markov Computer Models in Geology. Van Nostrand Reinhold, New York.
|
Luo, F., Du, S. H., Huang, Y., et al., 2022. Determining the Boundary of the Jiali-Palongzangbu Tectonic Mélange Belt Based on Airborne Geophysical Prospecting and Its Engineering Geological Risk. Earth Science, 47(3): 779-793 (in Chinese with English abstract).
|
Ma, L., Deng, H., Yan, Y. S., et al., 2022. Hydrofacies Simulation Based on Transition Probability Geostatistics Using Electrical Resistivity Tomography and Borehole Data. Hydrogeology Journal, 30(7): 2117-2134. https://doi.org/10.1007/s10040-022-02539-9
|
Manchuk, J. G., Deutsch, C. V., 2012. A Flexible Sequential Gaussian Simulation Program: USGSIM. Computers & Geosciences, 41: 208-216. https://doi.org/10.1016/j.cageo.2011.08.013
|
Marquardt, D. W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-441. https://doi.org/10.1137/0111030
|
Park, Y. J., Sudicky, E. A., McLaren, R. G., et al., 2004. Analysis of Hydraulic and Tracer Response Tests within Moderately Fractured Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 40(12): W12404. https://doi.org/10.1029/2004wr003188
|
Piccinini, L., Fabbri, P., Pola, M., et al., 2017. An Example of Aquifer Heterogeneity Simulation to Modeling Well-Head Protection Areas. Italian Journal of Engineering Geology and Environment, Special Issue: 103-115. doi: 10.4408/IJEGE.2017-01.S-10
|
Politis, D. N., 1994. Markov Chains in Many Dimensions. Advances in Applied Probability, 26(3): 756-774. https://doi.org/10.2307/1427819
|
Siena, M., Riva, M., 2020. Impact of Geostatistical Reconstruction Approaches on Model Calibration for Flow in Highly Heterogeneous Aquifers. Stochastic Environmental Research and Risk Assessment, 34(10): 1591-1606. https://doi.org/10.1007/s00477-020-01865-2
|
Sun, Q., Shao, J. L., Wang, Y. L., et al., 2019. Research on Appropriate Borehole Density for Establishing Reliable Geological Model Based on Quantitative Uncertainty Analysis. Arabian Journal of Geosciences, 12(13): 410. https://doi.org/10.1007/s12517-019-4533-7
|
Sun, Q., Shao, J. L., Cui, Y. L., et al., 2019. Numerical Simulations of Groundwater Based on Three-Dimensional Stochastic Hydrogeologic Structure Model: A Case Study from West Liaohe Plain. Geoscience, 33(2): 451-460(in Chinese with English abstract).
|
Teramoto, E. H., Engelbrecht, B. Z., Gonçalves, R. D., et al., 2021. Probabilistic Backward Location for the Identification of Multi-Source Nitrate Contamination. Stochastic Environmental Research and Risk Assessment, 35(4): 941-954. https://doi.org/10.1007/s00477-020-01966-y
|
Wang, X. C., Deng, X. H., Chen, X. D., et al., 2021. Application Effect of TEM Based on High Temperature Superconducting Sensor in Qingchengzi Ore-Concentrated Area. Earth Science, 46(5): 1871-1880(in Chinese with English abstract).
|
Xie, J., Liu, Y., Li, X. Q., et al., 2021. The Application of Opposing Coils Transient Electromagnetics in the Detection of Karst Subsidence Area. Coal Geology & Exploration, 49(3): 212-218, 226(in Chinese with English abstract).
|
Yao, C. C., Wei, J. H., 2015. Case Study of Parameter Auto-Calibration of Distributed Parameter Model Based on Condor Algorithm. South-to-North Water Transfers and Water Science & Technology, 13(4): 733-736, 770(in Chinese with English abstract).
|
高伟, 周丰, 董延军, 等, 2014. 基于PEST的HSPF水文模型多目标自动校准研究. 自然资源学报, 29(5): 855-867.
|
何芳, 吴吉春, 2003. 基于马尔可夫链的多元指示地质统计模型. 水文地质工程地质, 30(5): 28-32.
|
罗锋, 杜世回, 黄勇, 等, 2022. 基于航空物探的嘉黎-帕隆藏布构造混杂岩带边界厘定及其工程地质风险. 地球科学, 47(3): 779-793. doi: 10.3799/dqkx.2022.028
|
孙倩, 邵景力, 崔亚莉, 等, 2019. 基于三维随机水文地质结构模型的地下水流数值模拟: 以西辽河平原为例. 现代地质, 33(2): 451-460.
|
王兴春, 邓晓红, 陈晓东, 等, 2021. 基于高温超导的瞬变电磁法在青城子矿集区的应用. 地球科学, 46(5): 1871-1880. doi: 10.3799/dqkx.2020.383
|
谢嘉, 刘洋, 李兴强, 等, 2021. 等值反磁通瞬变电磁法在岩溶塌陷区探测应用. 煤田地质与勘探, 49(3): 212-218, 226.
|
姚晨晨, 魏加华, 2015. 基于Condor的模型参数自动识别实例研究. 南水北调与水利科技, 13(4): 733-736, 770.
|
![]() |
![]() |
![]() |
![]() |