Citation: | Peng Guangrong, Zhang Lili, Xu Xinming, He Jinhai, Jiang Dapeng, Ye Qing, 2024. Core Complex and Detachment Structure in the Kaiping Sag, Pearl River Mouth Basin and a Discussion on the Dynamics. Earth Science, 49(9): 3306-3317. doi: 10.3799/dqkx.2023.151 |
Arca, M. S., Kapp, P., Johnson, R. A., 2010. Cenozoic Crustal Extension in Southeastern Arizona and Implications for Models of Core-Complex Development. Tectonophysics, 488(1-4): 174-190. https://doi.org/10.1016/j.tecto.2010.03.021
|
Brun, J. P., Gutscher, M. A., Teams, D. E., 1992. Deep Crustal Structure of the Rhine Graben from DEKORP-ECORS Seismic Reflection Data: A Summary. Tectonophysics, 208(1): 139-147. https://doi.org/10.1016/0040-1951(92)90340-C
|
Brun, J. P., Sokoutis, D., Tirel, C., et al., 2018. Crustal Versus Mantle Core Complexes. Tectonophysics, 746: 22-45. https://doi.org/10.1016/j.tecto.2017.09.017
|
Carcione, J. M., Poletto, F., 2013. Seismic Rheological Model and Reflection Coefficients of the Brittle–Ductile Transition. Pure and Applied Geophysics, 170(12): 2021-2035. https://doi.org/10.1007/s00024-013-0643-4
|
Coney, P. J., Harms, T. A., 1984. Cordilleran Metamorphic Core Complexes: Cenozoic Extensional Relics of Mesozoic Compression. Geology, 12(9): 550-554. https://doi.org/10.1130/0091-7613(1984)12550: cmccce>2.0.co;2 doi: 10.1130/0091-7613(1984)12550:cmccce>2.0.co;2
|
Davis, G. H., Coney, P. J., 1979. Geologic Development of the Cordilleran Metamorphic Core Complexes. Geology, 7(3): 120-124. https://doi.org/10.1130/0091-7613(1979)7<120: GDOTCM>2.0.CO;2 doi: 10.1130/0091-7613(1979)7<120:GDOTCM>2.0.CO;2
|
Deng, H. D., Ren, J. Y., Pang, X., et al., 2020. South China Sea Documents the Transition from Wide Continental Rift to Continental Break up. Nature Communications, 11: 4583. https://doi.org/10.1038/s41467-020-18448-y
|
Deng, P., 2018. The Nature and Tectonic Transition of the Multiphase Rifting in the Northern Margin of the South China Sea: Base on the Study of the Zhu I Depression in Pearl River Mouth Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Escartín, J., Mével, C., Petersen, S., et al., 2017. Tectonic Structure, Evolution, and the Nature of Oceanic Core Complexes and Their Detachment Fault Zones (13°20'N and 13°30'N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 18(4): 1451-1482. https://doi.org/10.1002/2016gc006775
|
Fossen, H., 2010. Structural Geology. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511777806
|
Huang, H. B., Klingelhoefer, F., Qiu, X. L., et al., 2021. Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 40(2): e2020TC006260. https://doi.org/10.1029/2020TC006260
|
Ji, M., Hu, L., Liu, J. L., et al., 2008. Features and Mechanism of Corrugation Structure in the Liaonan (Southern Liaoning) Metamorphic Core Complex. Chinese Journal of Geology, 43(1): 12-22 (in Chinese with English abstract).
|
Klemperer, S. L., 1987. A Relation Between Continental Heat Flow and the Seismic Reflectivity of the Lower Crust. Journal of Geophysics-Zeitschrift Fur Geophysik, 61(1): 1–11.
|
Li, L., Wang, B., Lei, C., et al., 2021. Tectonic Framework in the Xisha Area and Its Differential Evolution. Earth Science, 46(9): 3321-3337 (in Chinese with English abstract).
|
Li, S. Z., Lü, H. Q., Hou, F. H., et al., 2006. Oceanic Core Complex. Marine Geology & Quaternary Geology, 26(1): 47-52 (in Chinese with English abstract).
|
Liotta, D., Ranalli, G., 1999. Correlation between Seismic Reflectivity and Rheology in Extended Lithosphere: Southern Tuscany, Inner Northern Apennines, Italy. Tectonophysics, 315(1-4): 109-122. https://doi.org/10.1016/s0040-1951(99)00292-9
|
Lister, G. S., Davis, G. A., 1989. The Origin of Metamorphic Core Complexes and Detachment Faults Formed during Tertiary Continental Extension in the Northern Colorado River Region, U. S. A. Journal of Structural Geology, 11(1-2): 65-94. https://doi.org/10.1016/0191-8141(89)90036-9
|
Little, T. A., Webber, S. M., Mizera, M., et al., 2019. Evolution of a Rapidly Slipping, Active Low-Angle Normal Fault, Suckling-Dayman Metamorphic Core Complex, SE Papua New Guinea. GSA Bulletin, 131(7-8): 1333-1363. https://doi.org/10.1130/b35051.1
|
Liu, D. M., 2003. Review of the Basic Characteristics of the Metamorphic Core Complexs in China. Geoscience, 17(2): 125-130 (in Chinese with English abstract).
|
Malavieille, J., 1993. Late Orogenic Extension in Mountain Belts: Insights from the Basin and Range and the Late Paleozoic Variscan Belt. Tectonics, 12(5): 1115-1130. https://doi.org/10.1029/93tc01129
|
Mizera, M., Little, T. A., Biemiller, J., et al., 2019. Structural and Geomorphic Evidence for Rolling-Hinge Style Deformation of an Active Continental Low-Angle Normal Fault, SE Papua New Guinea. Tectonics, 38(5): 1556-1583. https://doi.org/10.1029/2018tc005167
|
Parnell-Turner, R., Escartín, J., Olive, J. A., et al., 2018. Genesis of Corrugated Fault Surfaces by Strain Localization Recorded at Oceanic Detachments. Earth and Planetary Science Letters, 498: 116-128. https://doi.org/10.1016/j.epsl.2018.06.034
|
Platt, J. P., Behr, W. M., Cooper, F. J., 2015. Metamorphic Core Complexes: Windows into the Mechanics and Rheology of the Crust. Journal of the Geological Society, 172(1): 9-27. https://doi.org/10.1144/jgs2014-036
|
Ren, J. Y., Luo, P., Gao, Y. Y., et al., 2022. Structural, Sedimentary and Magmatic Records during Continental Breakup at Southwest Sub-Basin of South China Sea. Earth Science, 47(7): 2287-2302 (in Chinese with English abstract).
|
Ring, U., 2014. Metamorphic Core Complexes. In: Harff, J., Meschede, M., Petersen, S., et al., eds., Encyclopedia of Marine Geosciences. Springer Netherlands, Dordrecht.
|
Seyfert, C. K., 1987. Cordilleran Metamorphic Core Complexes. In: Seyfert, C. K., ed., Encyclopedia of Structural Geology and Plate Tectonics. Van Nortrand Reinhold Company, New York, 113-130.
|
Shi, H. S., Du, J. Y., Mei, L. F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
|
Tirel, C., Brun, J. P., Burov, E., 2008. Dynamics and Structural Development of Metamorphic Core Complexes. Journal of Geophysical Research: Solid Earth, 113(B4): B04403. https://doi.org/10.1029/2005jb003694
|
Wang, J., Luan, X. W., He, B. S., et al., 2021. Characteristics and Genesis of Faults in Southwestern Pearl River Mouth Basin, Northern South China Sea. Earth Science, 46(3): 916-928 (in Chinese with English abstract).
|
Wang, X. S., Zheng, Y. D., Zhang, J. J., et al., 2002. Extensional Kinematics and Shear Type of the Hohhot Metamorphic Core Complex, Inner Mongolia. Geological Bulletin of China, 21(4-5): 238-245 (in Chinese with English abstract).
|
Webber, S., Little, T. A., Norton, K. P., et al., 2020. Progressive Back-Warping of a Rider Block Atop an Actively Exhuming, Continental Low-Angle Normal Fault. Journal of Structural Geology, 130: 103906. https://doi.org/10.1016/j.jsg.2019.103906
|
Whitney, D. L., Teyssier, C., Rey, P., et al., 2013. Continental and Oceanic Core Complexes. Geological Society of America Bulletin, 125(3-4): 273-298. https://doi.org/10.1130/b30754.1
|
Yang, B. F., Xiong, C., Cao, J. H., et al., 2020. Constrains of Sliding Wave Phases on the Low-Velocity Layer in the Pearl River Estuary. Journal of Tropical Oceanography, 39(1): 106-119 (in Chinese with English abstract).
|
Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. The Late Cretaceous Tectonic Evolution of the South China Sea Area: An Overview, and New Perspectives from 3D Seismic Reflection Data. Earth Science Reviews, 187: 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013
|
Ye, Q., Mei, L. F., Shi, H. S., et al., 2020. The Influence of Pre-Existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin. Tectonics, 39(3): e2019TC005845. https://doi.org/10.1029/2019TC005845
|
Zhao, M. H., Qiu, X. L., Xu, H. L., 2007. The Distribution and Identification of Low-Velocity Layer within the Sedimentary Layer and Crust in the Northern South China Sea. Progress in Natural Science, 17(4): 471-479 (in Chinese).
|
Zheng, Y., Wang, Y., Liu, R., et al., 1988. Sliding-Thrusting Tectonics Caused by Thermal Uplift in the Yunmeng Mountains, Beijing, China. Journal of Structural Geology, 10(2): 135-144. https://doi.org/10.1016/0191-8141(88)90111-3
|
Zheng, J. Y., Gao, Y. D., Zhang, X. T., et al., 2022. Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390 (in Chinese with English abstract).
|
Zheng, Y. D., 1999. Kinematic Vorticity Number and Shear Type Related to the Yagan Metamorphic Core Complex on Sino-Mongolian Border. Chinese Journal of Geology, 34(3): 273-280 (in Chinese with English abstract).
|
Zheng, Y. D., Zhang, Q., 1993. The Yagan Metamorphic Core Complex and Extensional Detachment Fault in Inner Mongolia. Acta Geologica Sinica, 67(4): 301-309 (in Chinese with English abstract).
|
Zhou, P. X., Xia, S. H., Hetényi, G., et al., 2020. Seismic Imaging of a Mid-Crustal Low-Velocity Layer Beneath the Northern Coast of the South China Sea and Its Tectonic Implications. Physics of the Earth and Planetary Interiors, 308: 106573. https://doi.org/10.1016/j.pepi.2020.106573
|
Zhou, Z. C., Mei, L. F., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002
|
邓棚, 2018. 南海北部陆缘古近纪多幕裂陷作用属性及转换——以珠江口盆地珠一坳陷为例(博士学位论文). 武汉: 中国地质大学.
|
纪沫, 胡玲, 刘俊来, 等, 2008. 辽南变质核杂岩主拆离断层的波瓦状构造(corrugation)及其成因. 地质科学, 43(1): 12-22.
|
李林, 王彬, 雷超, 等, 2021. 西沙海域盆地构造格局及其差异演化过程分析. 地球科学, 46(9): 3321-3337. doi: 10.3799/dqkx.2021.098
|
李三忠, 吕海青, 侯方辉, 等, 2006. 海洋核杂岩. 海洋地质与第四纪地质, 26(1): 47-52.
|
刘德民, 2003. 中国变质核杂岩的基本特征. 现代地质, 17(2): 125-130.
|
任建业, 罗盼, 高圆圆, 等, 2022. 南海西南次海盆地壳岩石圈伸展破裂过程的构造、沉积和岩浆作用记录. 地球科学, 47(7): 2287-2302. doi: 10.3799/dqkx.2022.135
|
施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461.
|
王嘉, 栾锡武, 何兵寿, 等, 2021. 南海北部珠江口盆地西南段断裂特征与成因讨论. 地球科学, 46(3): 916-928. doi: 10.3799/dqkx.2020.381
|
王新社, 郑亚东, 张进江, 等, 2002. 呼和浩特变质核杂岩伸展运动学特征及剪切作用类型. 地质通报, 21(4-5): 238-245.
|
杨碧峰, 熊成, 曹敬贺, 等, 2020. 滑行波震相对珠江口地区壳内低速层的约束作用. 热带海洋学报, 39(1): 106-119.
|
赵明辉, 丘学林, 徐辉龙, 等, 2007. 南海北部沉积层和地壳内低速层的分布与识别. 自然科学进展, 17(4): 471-479.
|
郑金云, 高阳东, 张向涛, 等, 2022. 珠江口盆地构造演化旋回及其新生代沉积环境变迁. 地球科学, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258
|
郑亚东, 1999. 亚干变质核杂岩的运动学涡度与剪切作用类型. 地质科学, 34(3): 273-280.
|
郑亚东, 张青, 1993. 内蒙古亚干变质核杂岩与伸展拆离断层. 地质学报, 67(4): 301-309.
|