Citation: | Ding Qizhen, Zhou Yinzhu, Zhou Jinlong, Zeng Yanyan, Sun Ying, Han Shuangbao, Liu Jiangtao, 2024. Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutant in Groundwater in Eastern Plain of Xinjiang. Earth Science, 49(11): 4008-4021. doi: 10.3799/dqkx.2023.152 |
Ali, S., Ali, H., Pakdel, M., et al., 2022. Spatial Analysis and Probabilistic Risk Assessment of Exposure to Fluoride in Drinking Water Using GIS and Monte Carlo Simulation. Environmental Science and Pollution Research International, 29(4): 5881-5890. https://doi.org/10.1007/s11356-021-16075-8
|
Bai, F., Zhou, J. L., Zeng, Y. Y., 2022. Hydrochemical Characteristics and Quality of Groundwater in the Plains of the Turpan Basin. Arid Zone Research, 39(2): 419-428 (in Chinese with English abstract).
|
Bai, M., Zhang, J., Li, X. X., et al., 2015. Distribution Characteristic of Groundwater Storage in Santanghu Basin of Balikun County, Xinjiang. Xinjiang Geology, 33(2): 270-274 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2015.02.023
|
Chen, L., 2014. The Study of Regional Hydrogeological Conditions and Groundwater Circulation in Turpan Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Chen, L., Wang, G. C., Hu, F. S., et al., 2014. Groundwater Hydrochemistry and Isotope Geochemistry in the Turpan Basin, North Western China. Journal of Arid Land, 6(4): 378-388. https://doi.org/10.1007/s40333-013-0249-9
|
Chen, Z. Q., Ma, T., Chen, L. Z., et al., 2023. Distribution and Formation of Shallow Groundwater with High Fluoride in Houtao Plain. Earth Science, 48(10): 3856-3865 (in Chinese with English abstract).
|
Gulgundi, M. S., Shetty, A., 2019. Source Apportionment of Groundwater Pollution Using Unmix and Positive Matrix Factorization. Environmental Processes, 6(2): 457-473. https://doi.org/10.1007/s40710-019-00373-y
|
Guo, X. R., Zuo, R., Shan, D., et al., 2017. Source Apportionment of Pollution in Groundwater Source Area Using Factor Analysis and Positive Matrix Factorization Methods. Human and Ecological Risk Assessment, 23(6): 1417-1436. https://doi.org/10.1080/10807039.2017.1322894
|
Han, L. L., Wang, H. L., Ge, L. H., et al., 2023. Transition of Source/Sink Processes and Fate of Ammonium in Groundwater along with Redox Gradients. Water Research, 231: 119600. https://doi.org/10.1016/j.watres.2023.119600
|
Huston, R., Chan, Y. C., Chapman, H., et al., 2012. Source Apportionment of Heavy Metals and Ionic Contaminants in Rainwater Tanks in a Subtropical Urban Area in Australia. Water Research, 46(4): 1121-1132. https://doi.org/10.1016/j.watres.2011.12.008
|
Jiang, W. J., Wang, G. C., Sheng, Y. Z., et al., 2016. Enrichment and Sources of Nitrogen in Groundwater in the Turpan-Hami Area, North Western China. Exposure and Health, 8(3): 389-400. https://doi.org/10.1007/s12403-016-0209-7
|
Khan, S., Cao, Q., Zheng, Y. M., et al., 2008. Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated with Wastewater in Beijing, China. Environmental Pollution, 152(3): 686-692. https://doi.org/10.1016/j.envpol.2007.06.056
|
Lei, M., Zhou, J. L., Zhou, Y. Z., et al., 2022. Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutants of Surface Water and Groundwater in the Southern Margin of Junggar Basin, Xinjiang, China. Journal of Environmental Management, 319: 115757. https://doi.org/10.1016/j.jenvman.2022.115757
|
Leong, J. Y. C., Chong, M. N., Poh, P. E., et al., 2017. Longitudinal Assessment of Rainwater Quality under Tropical Climatic Conditions in Enabling Effective Rainwater Harvesting and Reuse Schemes. Journal of Cleaner Production, 143: 64-75. https://doi.org/10.1016/j.jclepro.2016.12.149
|
Li, D. N., Gao, X. B., Wang, Y. X., et al., 2018. Diverse Mechanisms Drive Fluoride Enrichment in Groundwater in Two Neighboring Sites in Northern China. Environmental Pollution, 237: 430-441. https://doi.org/10.1016/j.envpol.2018.02.072
|
Li, T. D., Liu, Y., 2022. Optimize Ecological Environment and Ensure People's Health. Earth Science, 47(10): 3477-3490 (in Chinese with English abstract).
|
Liang, X. J., Xiao, C. L., Sheng, H. X., et al., 2007. Migration and Transformation of Ammonia-Nitrite-Nitrates in Groundwater in the City of Jilin. Journal of Jilin University (Earth Science Edition), 37(2): 335-340, 345 (in Chinese with English abstract).
|
Liu, J. T., Peng, Y. M., Li, C. S., et al., 2021. An Investigation into the Hydrochemistry, Quality and Risk to Human Health of Groundwater in the Central Region of Shandong Province, North China. Journal of Cleaner Production, 282: 125416. https://doi.org/10.1016/j.jclepro.2020.125416
|
Liu, L. N., Wu, J. H., He, S., et al., 2022. Occurrence and Distribution of Groundwater Fluoride and Manganese in the Weining Plain (China) and Their Probabilistic Health Risk Quantification. Exposure and Health, 14(2): 263-279. https://doi.org/10.1007/s12403-021-00434-4
|
Lu, M. A., 2007. Multistage Evolution of the Basin-and-Range Structure of the Eastern Section of the Tianshan Mountains (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
|
Luan, F. J., Zhou, J. L., Jia, R. L., et al., 2016. Analysis and Evaluation of Groundwater Quality in the Plain Areas of Barkol-Yiwu Basin, Xinjiang. Journal of Xinjiang Agricultural University, 39(3): 253-258 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-8614.2016.03.014
|
Luan, F. J., Zhou, J. L., Jia, R. L., et al., 2017. Hydrochemical Characteristics and Formation Mechanism of Groundwater in Plain Areas of Barkol-Yiwu Basin, Xinjiang. Environmental Chemistry, 36(2): 380-389 (in Chinese with English abstract).
|
Ma, W. C., Tai, L. Y., Qiao, Z., et al., 2018. Contamination Source Apportionment and Health Risk Assessment of Heavy Metals in Soil around Municipal Solid Waste Incinerator: A Case Study in North China. Science of the Total Environment, 631: 348-357. https://doi.org/10.1016/j.scitotenv.2018.03.011
|
Morisset, T., Ramirez-Martinez, A., Wesolek, N., et al., 2013. Probabilistic Mercury Multimedia Exposure Assessment in Small Children and Risk Assessment. Environment International, 59: 431-441. https://doi.org/10.1016/j.envint.2013.07.003
|
Mukherjee, I., Singh, U. K., 2022. Environmental Fate and Health Exposures of the Geogenic and Anthropogenic Contaminants in Potable Groundwater of Lower Ganga Basin, India. Geoscience Frontiers, 13(3): 101365. https://doi.org/10.1016/j.gsf.2022.101365
|
Paatero, P., Tapper, U., 1994. Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics, 5(2): 111-126. https://doi.org/10.1002/env.3170050203
|
Ramesh, R., Subramanian, M., Lakshmanan, E., et al., 2021. Human Health Risk Assessment Using Monte Carlo Simulations for Groundwater with Uranium in Southern India. Ecotoxicology and Environmental Safety, 226: 112781. https://doi.org/10.1016/j.ecoenv.2021.112781
|
Raza, M., Hussain, F., Lee, J. Y., et al., 2017. Groundwater Status in Pakistan: A Review of Contamination, Health Risks, and Potential Needs. Critical Reviews in Environmental Science and Technology, 47(18): 1713-1762. https://doi.org/10.1080/10643389.2017.1400852
|
Rodvang, S. J., Mikalson, D. M., Ryan, M. C., 2004. Changes in Ground Water Quality in an Irrigated Area of Southern Alberta. Journal of Environmental Quality, 33(2): 476-487. https://doi.org/10.2134/jeq2004.4760
|
Soleimani, H., Nasri, O., Ghoochani, M., et al., 2022. Groundwater Quality Evaluation and Risk Assessment of Nitrate Using Monte Carlo Simulation and Sensitivity Analysis in Rural Areas of Divandarreh County, Kurdistan Province, Iran. International Journal of Environmental Analytical Chemistry, 102(10): 2213-2231. https://doi.org/10.1080/03067319.2020.1751147
|
Veizis, I. E., Cotton, C. U., 2007. Role of Kidney Chloride Channels in Health and Disease. Pediatric Nephrology, 22(6): 770-777. https://doi.org/10.1007/s00467-006-0355-4
|
Wang, G. X., Cheng, G. D., 2000. The Distributing Regularity of Fluorine and Its Environmental Characteristics in Arid Area of Northwest China. Scientia Geographica Sinica, 20(2): 153-159 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0690.2000.02.011
|
Yang, M. R., Li, F. X., Huang, C. Y., et al., 2023. VOC Characteristics and Their Source Apportionment in a Coastal Industrial Area in the Yangtze River Delta, China. Journal of Environmental Sciences, 127: 483-494. https://doi.org/10.1016/j.jes.2022.05.041
|
Yu, J. W., Zhou, J. L., Long, A. H., et al., 2019. A Comparative Study of Water Quality and Human Health Risk Assessment in Longevity Area and Adjacent Non-Longevity Area. International Journal of Environmental Research and Public Health, 16(19): 3737. https://doi.org/10.3390/ijerph16193737
|
Yu, L., Zheng, T. Y., Yuan, R. Y., et al., 2022. APCS-MLR Model: A Convenient and Fast Method for Quantitative Identification of Nitrate Pollution Sources in Groundwater. Journal of Environmental Management, 314: 115101. https://doi.org/10.1016/j.jenvman.2022.115101
|
Zanotti, C., Rotiroti, M., Fumagalli, L., et al., 2019. Groundwater and Surface Water Quality Characterization through Positive Matrix Factorization Combined with GIS Approach. Water Research, 159: 122-134. https://doi.org/10.1016/j.watres.2019.04.058
|
Zhang, H., Cheng, S. Q., Li, H. F., et al., 2020. Groundwater Pollution Source Identification and Apportionment Using PMF and PCA-APCA-MLR Receptor Models in a Typical Mixed Land-Use Area in Southwestern China. Science of the Total Environment, 741: 140383. https://doi.org/10.1016/j.scitotenv.2020.140383
|
Zhang, X. W., He, J. T., Huang, G. X., 2021. Iron and Manganese in Shallow Groundwater in Shijiazhuang: Distribution Characteristics and a Cause Analysis. Earth Science Frontiers, 28(4): 206-218 (in Chinese with English abstract).
|
Zhang, Y., Sun, J. C., Huang, G. X., et al., 2011. A Preliminary Study of Natural Background Levels of Groundwater in the Zhujiang River Delta. Geology in China, 38(1): 190-196 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.01.020
|
Zhao, Z. Y., 2021. Water Quality Investigation and Risk Assessment of Rural Water Sources in Northeast China (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract).
|
白凡, 周金龙, 曾妍妍, 2022. 吐鲁番盆地平原区地下水水化学特征及水质评价. 干旱区研究, 39(2): 419-428.
|
白铭, 张静, 李续续, 等, 2015. 新疆巴里坤三塘湖盆地地下水赋存分布特征. 新疆地质, 33(2): 270-274. doi: 10.3969/j.issn.1000-8845.2015.02.023
|
陈鲁, 2014. 吐鲁番盆地区域水文地质条件及地下水循环研究(博士学位论文). 北京: 中国地质大学.
|
陈占强, 马腾, 陈柳竹, 等, 2023. 后套平原浅层高氟地下水分布及成因. 地球科学, 48(10): 3856-3865. doi: 10.3799/dqkx.2021.237
|
李廷栋, 刘勇, 2022. 优化生态环境保障人民健康. 地球科学, 47(10): 3477-3490. doi: 10.3799/dqkx.2022.870
|
梁秀娟, 肖长来, 盛洪勋, 等, 2007. 吉林市地下水中"三氮" 迁移转化规律. 吉林大学学报(地球科学版), 37(2): 335-340, 345.
|
卢苗安, 2007. 天山东段盆山构造格局的多期演变(博士学位论文). 北京: 中国地震局地质研究所.
|
栾风娇, 周金龙, 贾瑞亮, 等, 2016. 新疆巴里坤‒伊吾盆地平原区地下水质量评价及分析. 新疆农业大学学报, 39(3): 253-258. doi: 10.3969/j.issn.1007-8614.2016.03.014
|
栾风娇, 周金龙, 贾瑞亮, 等, 2017. 新疆巴里坤‒伊吾盆地地下水水化学特征及成因. 环境化学, 36(2): 380-389.
|
王根绪, 程国栋, 2000. 西北干旱区水中氟的分布规律及环境特征. 地理科学, 20(2): 153-159.
|
张小文, 何江涛, 黄冠星, 2021. 石家庄地区浅层地下水铁锰分布特征及影响因素分析. 地学前缘, 28(4): 206-218.
|
张英, 孙继朝, 黄冠星, 等, 2011. 珠江三角洲地区地下水环境背景值初步研究. 中国地质, 38(1): 190-196. doi: 10.3969/j.issn.1000-3657.2011.01.020
|
赵政阳, 2021. 东北某地区村镇水源水质调查与健康风险评价(硕士学位论文). 哈尔滨: 哈尔滨工业大学.
|