Citation: | Wang Guozhuang, Luo Yang, Chen Honghan, Meng Yujing, Wang Xu, Zhao Yanchao, 2025. Geological Reserves Estimation of Fault-Controlled Fracturing Reservoirs in Tight and Low-Permeability Sandstones. Earth Science, 50(1): 181-194. doi: 10.3799/dqkx.2023.163 |
Agosta, F., Alessandroni, M., Antonellini, M., et al., 2010. From Fractures to Flow: A Field-Based Quantitative Analysis of an Outcropping Carbonate Reservoir. Tectonophysics, 490(3-4): 197-213. https://doi.org/10.1016/j.tecto.2010.05.005
|
Agosta, F., Aydin, A., 2006. Architecture and Deformation Mechanism of a Basin-Bounding Normal Fault in Mesozoic Platform Carbonates, Central Italy. Journal of Structural Geology, 28(8): 1445-1467. https://doi.org/10.1016/j.jsg.2006.04.006
|
Agosta, F., Prasad, M., Aydin, A., 2007. Physical Properties of Carbonate Fault Rocks, Fucino Basin (Central Italy): Implications for Fault Seal in Platform Carbonates. Geofluids, 7(1): 19-32. https://doi.org/10.1111/ j.1468-8123.2006.00158.x doi: 10.1111/j.1468-8123.2006.00158.x
|
Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
|
Cui, B. W., Zhao, Y., Zhang, G., et al., 2022. Estimation Method and Application for OOIP of Gulong Shale Oil in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 41(3): 14-23 (in Chinese with English abstract).
|
Dorsey, M. T., Rockwell, T. K., Girty, G. H., et al., 2021. Evidence of Hydrothermal Fluid Circulation Driving Elemental Mass Redistribution in an Active Fault Zone. Journal of Structural Geology, 144: 104269. https://doi.org/10.1016/j.jsg.2020.104269
|
Gong, F., Song, Y. C., Zeng, L. B., et al., 2023. The Heterogeneity of Petrophysical and Elastic Properties in Carbonate Rocks Controlled by Strike-Slip Fault: A Case Study from Yangjikan Outcrop in the Tarim Basin. Journal of Petroleum Science and Engineering, 220: 111170. https://doi.org/10.1016/j.petrol.2022.111170
|
Guo, B. W., Yu, F. S., Wang, Y. F., et al., 2022. Quantitative Prediction of Palaeo-Uplift Reservoir Control and Favorable Reservoir Formation Zones in Lufeng Depression. Advances in Geo-Energy Research, 6(5): 426-437. https://doi.org/10.46690/ager.2022.05.07
|
Guo, J. X., Dai, Q. D., Xu, W., 2001. Discussion on Fine Computing Method of Reserves—Taking Fluvial Facies Reservoirs as Example. Oil & Gas Recovery Techinology, 8(3): 31-33 (in Chinese with English abstract).
|
He, F. Q., Liang, C. C., Lu, C., et al., 2020. Identification and Description of Fault-Fracture Bodies in Tight and Low Permeability Reservoirs in Transitional Zone at the South Margin of Ordos Basin. Oil & Gas Geology, 41(4): 710-718 (in Chinese with English abstract).
|
He, F. Q., Qi, R., Yuan, C. Y., et al., 2022. Further Understanding of the Relationship between Fault Characteristic and Hydrocarbon Accumulation in Binchang Area, Ordos Basin. Earth Science, 49(11): 4082-4097 (in Chinese with English abstract).
|
Jeanne, P., Guglielmi, Y., Cappa, F., 2012. Multiscale Seismic Signature of a Small Fault Zone in a Carbonate Reservoir: Relationships between Vp Imaging, Fault Zone Architecture and Cohesion. Tectonophysics, 554-557: 185-201. https://doi.org/10.1016/j.tecto.2012.05.012
|
Jiang, R. Z., Qiao, X., He, J. X., et al., 2016. A New Method to Calculate Shale Gas Geological Reserves. Natural Gas Geoscience, 27(4): 699-705 (in Chinese with English abstract).
|
Kang, Z. Y., Chen, C., Li, L., et al., 2023. Evaluation Method of Bedrock Formation Resistivity and Macroscopic Fracture Porosity. Petroleum Geology & Oilfield Development in Daqing, 42(4): 122-130 (in Chinese with English abstract).
|
Lei, M., Chen, T., Han, Q. F., et al., 2023. A New Method for Calculating Fracture Porosity Based on Conventional Logging Data. Earth Science, 48(7): 2678-2689 (in Chinese with English abstract).
|
Li, Y. T., Qi, L. X., Zhang, S. N., et al., 2019. Characteristics and Development Mode of the Middle and Lower Ordovician Fault-Karst Reservoir in Shunbei Area, Tarim Basin. Acta Petrolei Sinica, 40(12): 1470-1484 (in Chinese with English abstract). doi: 10.7623/syxb201912006
|
Liu, J. L., Hu, Z. Q., Liu, Z. Q., et al., 2021. Gas Pool Sweet Spot Models and Their Forming Mechanism in the Xu 2 Member in Xinchang Area, Western Sichuan Depression, Sichuan Basin. Oil & Gas Geology, 42(4): 852-862 (in Chinese with English abstract).
|
Liu, Z. F., Liu, Z. Q., Guo, Y. L., et al., 2021. Concept and Geological Model of Fault-Fracture Reservoir and Their Application in Seismic Fracture Prediction: A Case Study on the Xu 2 Member Tight Sandstone Gas Pool in Xinchang Area, Western Sichuan Depression in Sichuan Basin. Oil & Gas Geology, 42(4): 973-980 (in Chinese with English abstract).
|
Liu, Z. Q., Xu, S. L., Liu, J. L., et al., 2020. Enrichment Laws of Deep Tight Sandstone Gas Reservoirs in the Western Sichuan Depression, Sichuan Basin. Natural Gas Industry, 40(2): 31-40 (in Chinese with English abstract).
|
Lu, X. B., Wang, Y., Yang, D. B., et al., 2020. Characterization of Paleo-Karst Reservoir and Faulted Karst Reservoir in Tahe Oilfield, Tarim Basin, China. Advances in Geo-Energy Research, 4(3): 339-348. https://doi.org/10.46690/ager.2020.03.11
|
Luo, Q., 2011. Transporting and Sealing Capacity of Fault Belt and Its Controlling on Reservoir. Petroleum Geology & Experiment, 33(5): 474-479 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2011.05.006
|
Luo, Y., Wang, Y. Z., Liu, H. P., et al., 2020. Overpressure Controlling Factors for Tectonic Fractures in Near-Source Tight Reservoirs in the Southwest Ordos Basin, China. Journal of Petroleum Science and Engineering, 188: 106818. https://doi.org/10.1016/j.petrol.2019.106818
|
Ma, Q. Y., Zeng, L. B., Xu, X. H., et al., 2022. Internal Architecture of Strike-Slip Fault Zone and Its Control over Reservoirs in the Xiaoerbulake Section, Tarim Basin. Oil & Gas Geology, 43(1): 69-78 (in Chinese with English abstract).
|
Meng, Y. J., Chen, H. H., Luo, Y., et al., 2023. Architecture of Intraplate Strike-Slip Fault Zones in the Yanchang Formation, Southern Ordos Basin, China: Characterization and Implications for Their Control on Hydrocarbon Enrichment. Journal of Structural Geology, 170: 104851. https://doi.org/10.1016/j.jsg.2023.104851
|
Pan, M. X., 2016. The Research of Precise Calculation of Geological Reserves Based on Sedimentary Microfacies (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract).
|
Qi, L. X., Yun, L., Cao, Z. C., et al., 2021. Geological Reserves Assessment and Petroleum Exploration Targets in Shunbei Oil & Gas Field. Xinjiang Petroleum Geology, 42(2): 127-135 (in Chinese with English abstract).
|
Song, J. J., Sun, J. M., Wang, M., et al., 2018. Research Progress in the Internal Structure of the Fault. Progress in Geophysics, 33(5): 1956-1966 (in Chinese with English abstract).
|
Sun, Z. Q., Zhao, K. L., Zhao, J. X., et al., 2021. Characteristics of Chang 6-Chang 8 Reservoirs and the Effect of Diagenesis on Pore Densification in Binxian-Changwu Area, Ordos Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 48(5): 591-598 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2021.05.08
|
Torabi, A., Berg, S. S., 2011. Scaling of Fault Attributes: A Review. Marine and Petroleum Geology, 28(8): 1444-1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003
|
Wang, W., Fan, R., Li, C. Y., et al., 2021. Exploration and Prediction of Promising Fault-Fracture Reservoirs in the Xujiahe Formation, Northeastern Sichuan Basin. Oil & Gas Geology, 42(4): 992-1001 (in Chinese with English abstract).
|
Xin, L., 2016. Reserve Calculation of Carbonate Fracture-Vuggy Reservoirs Based on Volume Evaluation: A Case Study on the Block of Well Zhonggu 15, Central Uplift in Tarim Basin (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
|
Yang, G. L., Ren, Z. L., He, F. Q., et al., 2022. Fault-Fracture Body Growth and Hydrocarbon Enrichment of the Zhenjing Area, the Southwestern Margin of the Ordos Basin. Oil & Gas Geology, 43(6): 1382-1396 (in Chinese with English abstract).
|
Yang, T. Y., Fan, S. J., Chen, Y. Q., et al., 1998. Calculation Method for Oil and Natural Gas Reserves. Petroleum Industry Press, Beijing (in Chinese).
|
Ye, D. Y., Liu, G. N., Gao, F., et al., 2021. A Multi-Field Coupling Model of Gas Flow in Fractured Coal Seam. Advances in Geo-Energy Research, 5(1): 104-118. https://doi.org/10.46690/ager.2021.01.10
|
Zhang, L., Wang, Z. Q., Zhang, L. Y., et al., 2009. A Discussion on Certain Issues Concerning Reserve Calculation of Igneous Reservoirs. Oil & Gas Geology, 30(2): 223-229 (in Chinese with English abstract).
|
Zhang, W. B., Duan, T. Z., Li, M., et al., 2021. Architecture Characterization of Ordovician Fault-Controlled Paleokarst Carbonate Reservoirs in Tuoputai, Tahe Oilfield, Tarim Basin, NW China. Petroleum Exploration and Development, 48(2): 314-325 (in Chinese with English abstract).
|
Zhao, K. Z., Zhang, L. J., Zheng, D. M., et al., 2015. A Reserve Calculation Method for Fracture-Cavity Carbonate Reservoirs in Tarim Basin, NW China. Petroleum Exploration and Development, 42(2): 251-256 (in Chinese with English abstract).
|
崔宝文, 赵莹, 张革, 等, 2022. 松辽盆地古龙页岩油地质储量估算方法及其应用. 大庆石油地质与开发, 41(3): 14-23.
|
国景星, 戴启德, 徐炜, 2001. 储量精细计算方法探讨: 以河流相储集层为例. 油气地质与采收率, 8(3): 31-33. doi: 10.3969/j.issn.1009-9603.2001.03.010
|
何发岐, 梁承春, 陆骋, 等, 2020. 鄂尔多斯盆地南缘过渡带致密‒低渗油藏断缝体的识别与描述. 石油与天然气地质, 41(4): 710-718.
|
何发岐, 齐荣, 袁春艳, 等, 2022. 鄂尔多斯盆地南部地区断裂构造与油气成藏关系再认识: 以彬长地区为例. 地球科学, 49(11): 4082-4097. doi: 10.3799/dqkx.2022.256
|
姜瑞忠, 乔欣, 何吉祥, 等, 2016. 页岩气地质储量计算新方法. 天然气地球科学, 27(4): 699-705.
|
康志勇, 陈昌, 李龙, 等, 2023. 基岩地层电阻率及宏观裂缝孔隙度评价方法. 大庆石油地质与开发, 42(4): 122-130.
|
雷明, 陈涛, 韩乾凤, 等, 2023. 一种基于常规测井资料计算碳酸盐岩储层裂缝孔隙度新方法. 地球科学, 48(7): 2678-2689. doi: 10.3799/dqkx.2022.202
|
李映涛, 漆立新, 张哨楠, 等, 2019. 塔里木盆地顺北地区中‒下奥陶统断溶体储层特征及发育模式. 石油学报, 40(12): 1470-1484. doi: 10.7623/syxb201912006
|
刘君龙, 胡宗全, 刘忠群, 等, 2021. 四川盆地川西坳陷新场须家河组二段气藏甜点模式及形成机理. 石油与天然气地质, 42(4): 852-862.
|
刘振峰, 刘忠群, 郭元岭, 等, 2021. "断缝体"概念、地质模式及其在裂缝预测中的应用——以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例. 石油与天然气地质, 42(4): 973-980.
|
刘忠群, 徐士林, 刘君龙, 等, 2020. 四川盆地川西坳陷深层致密砂岩气藏富集规律. 天然气工业, 40(2): 31-40.
|
罗群, 2011. 断裂带的输导与封闭性及其控藏特征. 石油实验地质, 33(5): 474-479. doi: 10.3969/j.issn.1001-6112.2011.05.006
|
马庆佑, 曾联波, 徐旭辉, 等, 2022. 塔里木盆地肖尔布拉克剖面走滑断裂带内部结构及控储模式. 石油与天然气地质, 43(1): 69-78.
|
潘明溪, 2016. 相控地质储量精细计算方法研究(硕士学位论文). 大庆: 东北石油大学.
|
漆立新, 云露, 曹自成, 等, 2021. 顺北油气田地质储量评估与油气勘探方向. 新疆石油地质, 42(2): 127-135.
|
宋佳佳, 孙建孟, 王敏, 等, 2018. 断层内部结构研究进展. 地球物理学进展, 33(5): 1956-1966.
|
孙志强, 赵凯莉, 赵俊兴, 等, 2021. 彬县‒长武地区长6‒长8储层特征及成岩作用对储层致密化的影响. 成都理工大学学报(自然科学版), 48(5): 591-598. doi: 10.3969/j.issn.1671-9727.2021.05.08
|
王威, 凡睿, 黎承银, 等, 2021. 川东北地区须家河组"断缝体"气藏有利勘探目标和预测技术. 石油与天然气地质, 42(4): 992-1001.
|
新立, 2016. 碳酸盐岩缝洞雕刻容积法储量计算研究——以塔中地区中古15井区为例(硕士学位论文). 北京: 中国石油大学.
|
杨桂林, 任战利, 何发岐, 等, 2022. 鄂尔多斯盆地西南缘镇泾地区断缝体发育特征及油气富集规律. 石油与天然气地质, 43(6): 1382-1396.
|
杨通佑, 范尚炯, 陈元千, 等, 1998. 石油及天然气储量计算方法. 北京: 石油工业出版社.
|
张玲, 王志强, 张丽艳, 等, 2009. 火成岩油气藏储量计算有关问题探讨. 石油与天然气地质, 30(2): 223-229.
|
张文彪, 段太忠, 李蒙, 等, 2021. 塔河油田托甫台区奥陶系断溶体层级类型及表征方法. 石油勘探与开发, 48(2): 314-325.
|
赵宽志, 张丽娟, 郑多明, 等, 2015. 塔里木盆地缝洞型碳酸盐岩油气藏储量计算方法. 石油勘探与开发, 42(2): 251-256.
|