• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Li Zhiqiang, Zhang Rucai, Liang Xuemei, Pei Xiaogang, Chen Zhangjin, 2024. Chemical Kinetics Models of Organic Matter (Vitrinite and Bitumen) Reflectance: Retrospect and Advances. Earth Science, 49(11): 4130-4155. doi: 10.3799/dqkx.2023.183
    Citation: Li Zhiqiang, Zhang Rucai, Liang Xuemei, Pei Xiaogang, Chen Zhangjin, 2024. Chemical Kinetics Models of Organic Matter (Vitrinite and Bitumen) Reflectance: Retrospect and Advances. Earth Science, 49(11): 4130-4155. doi: 10.3799/dqkx.2023.183

    Chemical Kinetics Models of Organic Matter (Vitrinite and Bitumen) Reflectance: Retrospect and Advances

    doi: 10.3799/dqkx.2023.183
    • Received Date: 2023-09-14
    • Publish Date: 2024-11-25
    • The chemical kinetics model of the reflectance of vitrinite and bitumen is the most used research method to calibrate the thermal history of basin and predict the thermal evolution of source rocks. In recent years, important research progress has been made, but it has not attracted much attention from domestic researchers. Based on reviewing the research process of the chemical kinetic model of organic matter, in this paper it reports the new progress of relevant research. The classical Vitrimat model and Easy%Ro model are based on three principles: (1) the vitrinite reflectance is related to H/C and O/C. (2) The thermal degradation product of vitrinite was the sum of residual vitrinite and four kinds of products (H2O, CO2, CHn, CH4). (3) Thermal degradation reaction follows Arrhenius equation. Easy%Ro model has design defects: (1) the frequency factor (1×1013) is too low; (2) lack of high maturity (Ro > 2.0%) samples when optimizing activation energy distribution. The shortcomings in practical application include: (1) when the measured Ro < 0.9%, the calculated value of Easy%Ro is too high; (2) when the measured Ro > 2.0%, the calculated value of the Easy%Ro model is too low. New models Basin%Ro, Easy%RoDL, Easy%RoV and Easy%RoB (bitumen) are designed to overcome the obvious shortcomings of the Easy%Ro kinetics model, but the data basis, calibration principles and potential applicability of each model are different. The "dog-leg" curve characteristic of BasinRo% model at medium-low maturity stage may not be applicable to vitrinite reflectance-depth profile; The Easy%RoDL model has strong applicability to geological conditions; Easy%RoV is more suitable for laboratory heating rate conditions. At the geological heating rate, the new chemical kinetics models developed for Ro have all improved the calculated values when Ro > 2.0 %. Easy%RoB is a kinetics model designed for BRo based on the function relation of BRo-VRo (equivalent Vitinite reflectance) and Vitrimat 2018 (Type-Ⅱ) model, which has high applicability to geological conditions. Calibration chemical kinetics module and Kinetics hydrocarbon generation kinetics module in PetroMod basin simulation platform were used to carry out three studies: (1) calibration and prediction of ultra-deep source rock maturity, (2) thermal history and basin dynamics derived from vitrinite reflectance of medium to low maturity source rocks, (3) establishment of hydrocarbon generation model combined with hydrocarbon generation kinetics parameters. In the future, attention should be paid to the study of the adaptability of the new chemical kinetics models under laboratory/geological conditions. Improving the accuracy of reflectance measurement, correctly identifying the degree of reflectance inhibition, and being coupled with low temperature thermochronology parameter inversion are of great significance for improving the accuracy of basin thermal history research using chemical kinetics models.

       

    • loading
    • Araujo, C. V., Borrego, A. G., Cardott, B., et al., 2014. Petrographic Maturity Parameters of a Devonian Shale Maturation Series, Appalachian Basin, USA. ICCP Thermal Indices Working Group Interlaboratory Exercise. International Journal of Coal Geology, 130: 89-101. https://doi.org/10.1016/j.coal.2014.05.002
      Baniasad, A., Littke, R., Froidl, F., et al., 2021. Quantitative Hydrocarbon Generation and Charge Risk Assessment in the NW Persian Gulf: A 3D Basin Modeling Approach. Marine and Petroleum Geology, 126: 104900. https://doi.org/10.1016/j.marpetgeo.2021.104900
      Baur, F., 2019. Predicting Petroleum Gravity with Basin Modeling: New Kinetic Models. AAPG Bulletin, 103(8): 1811-1837. https://doi.org/10.1306/12191818064
      Borrego, A. G., Araujo, C. V., Balke, A., et al., 2006. Influence of Particle and Surface Quality on the Vitrinite Reflectance of Dispersed Organic Matter: Comparative Exercise Using Data from the Qualifying System for Reflectance Analysis Working Group of ICCP. International Journal of Coal Geology, 68(3/4): 151-170. https://doi.org/10.1016/j.coal.2006.02.002
      Braun, R. L., Burnham, A. K., 1987. Analysis of Chemical Reaction Kinetics Using a Distribution of Activation Energies and Simpler Models. Energy & Fuels, 1(2): 153-161. https://doi.org/10.1021/ef00002a003
      Buchardt, B. B., Lewan, M. D., 1990. Reflectance of Vitrinite⁃Like Macerals as a Thermal Maturity Index for Cambrian⁃Ordovician Alum Shale, Southern Scandinavia (1). AAPG Bulletin, 74(4): 394-406. https://doi.org/10.1306/0c9b230d⁃1710⁃11d7⁃8645000102c1865d
      Burnaz, L., Zieger, L., Schmatz, J., et al., 2023. Preparation Techniques for Microscopic Observation of Dispersed Organic Matter and Their Effect on Vitrinite Reflectance. International Journal of Coal Geology, 272: 104249. https://doi.org/10.1016/j.coal.2023.104249
      Burnham, A. K., 2017a. Global Chemical Kinetics of Fossil Fuels: How to Model Maturation and Pyrolysis. Springer International, Switzerland.
      Burnham, A. K., 2017b. Advances Needed for Kinetic Models of Vitrinite Reflectance. Technical Report, Stanford University, Palo Alto.
      Burnham, A. K., 2019. Kinetic Models of Vitrinite, Kerogen, and Bitumen Reflectance. Organic Geochemistry, 131: 50-59. https://doi.org/10.1016/j.orggeochem.2019.03.007
      Burnham, A. K., 2021a. Modernizing Vitrinite Reflectance Models for Paleothermal History Calibration. AAPG Explorer, 42(6): 24-24.
      Burnham, A. K., 2021b. Understanding the Fundamentals of Vitrinite Reflectance Modeling. Stanford Basin and Petroleum System Modeling Seminar, California.
      Burnham, A. K., Braun, R. L., Gregg, H. R., et al., 1987. Comparison of Methods for Measuring Kerogen Pyrolysis Rates and Fitting Kinetic Parameters. Energy & Fuels, 1(6): 452-458. https://doi.org/10.1021/ef00006a001
      Burnham, A. K., Oh, M. S., Crawford, R. W., et al., 1989. Pyrolysis of Argonne Premium Coals: Activation Energy Distributions and Related Chemistry. Energy & Fuels, 3(1): 42-55. https://doi.org/10.1021/ef00013a008
      Burnham, A. K., Peters, K. E., Schenk, O., 2016. Evolution of Vitrinite Reflectance Models, AAPG 2016 Annual Convention and Exhibition, Calgary, Alberta.
      Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. https://doi.org/10.1016/0016⁃7037(89)90136⁃1
      Connan, J., 1974. Time⁃Temperature Relation in Oil Genesis. AAPG Bulletin, 58(12): 2516-2521. https://doi.org/10.1306/83d91beb⁃16c7⁃11d7⁃8645000102c1865d
      Dai, S. F., Tang, Y. G., Jiang, Y. F., et al., 2021. An In⁃Depth Interpretation of Definition and Classification of Macerals in Coal (ICCP System 1994) for Chinese Researchers, Ⅰ: Vitrinite. Journal of China Coal Society, 46(6): 1821-1832 (in Chinese with English abstract).
      Dalla Torre, M., Ferreiro Mählmann, R., Ernst, W. G., 1997. Experimental Study on the Pressure Dependence of Vitrinite Maturation. Geochimica et Cosmochimica Acta, 61(14): 2921-2928. https://doi.org/10.1016/S0016⁃7037(97)00104⁃X
      Ding, R. X., 2023. Low Temperature Thermal History Reconstruction Based on Apatite Fission⁃Track Length Distribution and Apatite U⁃Th/He Age Using Low⁃T Thermo. Journal of Earth Science, 34(3): 717-725. https://doi.org/10.1007/s12583⁃020⁃1071⁃x
      Froidl, F., Littke, R., Baniasad, A., et al., 2021. Peculiar Berriasian "Wealden" Shales of Northwest Germany: Organic Facies, Depositional Environment, Thermal Maturity and Kinetics of Petroleum Generation. Marine and Petroleum Geology, 124: 104819. https://doi.org/10.1016/j.marpetgeo.2020.104819
      Froidl, F., Zieger, L., Mahlstedt, N., et al., 2020. Comparison of Single⁃ and Multi⁃Ramp Bulk Kinetics for a Natural Maturity Series of Westphalian Coals: Implications for Modelling Petroleum Generation. International Journal of Coal Geology, 219: 103378. https://doi.org/10.1016/j.coal.2019.103378
      Fryklund, B., Stark, P., 2020. Super Basins—New Paradigm for Oil and Gas Supply. AAPG Bulletin, 104(12): 2507-2519. https://doi.org/10.1306/09182017314
      Gallagher, K., 2012. Transdimensional Inverse Thermal History Modeling for Quantitative Thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2): EGU2013-9163. https://doi.org/10.1029/2011jb008825
      Goodarzi, F., Gentzis, T., Snowdon, L. R., et al., 1993. Effect of Mineral Matrix and Seam Thickness on Reflectance of Vitrinite in High to Low Volatile Bituminous Coals: An Enigma. Marine and Petroleum Geology, 10(2): 162-171. https://doi.org/10.1016/0264⁃8172(93)90021⁃J
      Goodarzi, F., Norford, B. S., 1985. Graptolites as Indicators of the Temperature Histories of Rocks. Journal of the Geological Society, 142(6): 1089-1099. https://doi.org/10.1144/gsjgs.142.6.1089.
      Gorbanenko, O., 2017. A Dry Polishing Technique for the Petrographic Examination of Mudrocks. International Journal of Coal Geology, 180: 122-126. https://doi.org/10.1016/j.coal.2017.03.013
      Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2015. Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Interlaboratory Agreement. Marine and Petroleum Geology, 59: 22-34. https://doi.org/10.1016/j.marpetgeo.2014.07.015
      Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2020a. Testing Reproducibility of Vitrinite and Solid Bitumen Reflectance Measurements in North American Unconventional Source⁃Rock Reservoir Petroleum Systems. Marine and Petroleum Geology, 114: 104172. https://doi.org/10.1016/j.marpetgeo.2019.104172
      Hackley, P. C., Jubb, A. M., Valentine, B. J., et al., 2020b. Investigating the Effects of Broad Ion Beam Milling to Sedimentary Organic Matter: Surface Flattening or Heat⁃Induced Aromatization and Condensation?. Fuel, 282: 118627. https://doi.org/10.1016/j.fuel.2020.118627
      Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8-51. https://doi.org/10.1016/j.coal.2016.06.010
      Hackley, P. C., Lewan, M., 2018. Understanding and Distinguishing Reflectance Measurements of Solid Bitumen and Vitrinite Using Hydrous Pyrolysis: Implications to Petroleum Assessment. AAPG Bulletin, 102(6): 1119-1140. https://doi.org/10.1306/08291717097
      Hantschel, T., Kauerauf, A. I., 2009. Introduction to Basin Modeling. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin, 1-30. https://doi.org/10.1007/978⁃3⁃540⁃72318⁃9_1
      Hao, F., Li, S. T., Dong, W. L., et al., 1998. Abnormal Organic⁃Matter Maturation in the Yinggehai Basin, South China Sea: Implications for Hydrocarbon Expulsion and Fluid Migration from Overpressured Systems. Journal of Petroleum Geology, 21(4): 427-444. https://doi.org/10.1111/j.1747⁃5457.1998.tb00794.x
      Hao, F., Sun, Y., Li, S. T., et al., 1995. Overpressure Retardation of Organic⁃Matter Maturation and Petroleum Generation: A Case Study from the Yinggehai and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 79(4): 551-562. https://doi.org/10.1306/8d2b158e⁃171e⁃11d7⁃8645000102c1865d.
      Hao, F., Zou, H. Y., Gong, Z. S., et al., 2007. Hierarchies of Overpressure Retardation of Organic Matter Maturation: Case Studies from Petroleum Basins in China. AAPG Bulletin, 91(10): 1467-1498. https://doi.org/10.1306/05210705161
      Herrera Sánchez, N. C., Toro, B. A., Ruiz⁃Monroy, R., et al., 2021. Thermal History of the Northwestern Argentina, Central Andean Basin, Based on First⁃Ever Reported Graptolite Reflectance Data. International Journal of Coal Geology, 239: 103725. https://doi.org/10.1016/j.coal.2021.103725
      Hu, S. B., Long, Z. L., Zhu, J. Z., et al., 2019. Characteristics of Geothermal Field and Tectonic⁃Thermal Evolution in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 178-187 (in Chinese with English abstract). doi: 10.7623/syxb2019S1015
      Hu, S. B., Wang, J. Y., Zhang, R. Y., 1999a. Estimation of Stratum Denudation Thickness by Vitrinite Reflectance Data. Petroleum Exploration and Development, 26(4): 42-45 (in Chinese with English abstract).
      Hu, S. B., Zhang, R. Y., Luo, Y. H., et al., 1999b. Thermal History and Tectonic⁃Thermal Evolution Characteristics of Bohai Basin. Chinese Journal of Geophysics, 42(6): 748-755 (in Chinese with English abstract).
      Huang, L., Liu, C. Y., Kusky, T. M., 2015. Cenozoic Evolution of the Tan⁃Lu Fault Zone (East China)—Constraints from Seismic Data. Gondwana Research, 28(3): 1079-1095. https://doi.org/10.1016/j.gr.2014.09.005
      Huang, W. L., 1996. Experimental Study of Vitrinite Maturation: Effects of Temperature, Time, Pressure, Water, and Hydrogen Index. Organic Geochemistry, 24(2): 233-241. https://doi.org/10.1016/0146⁃6380(96)00032⁃0
      Hutton, A. C., Cook, A. C., 1980. Influence of Alginite on the Reflectance of Vitrinite from Joadja, NSW, and Some Other Coals and Oil Shales Containing Alginite. Fuel, 59(10): 711-714. https://doi.org/10.1016/0016⁃2361(80)90025⁃3
      Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1): 65-79. https://doi.org/10.1016/0166⁃5162(89)90113⁃4
      Jin, K. L., Liu, D. M., Yao, S. P., et al., 1997. Genetic Division and Geochemical Characteristics of Organic Components of Oil and Gas Source Rocks in China. Acta Sedimentologica Sinica, 15(2): 160-163 (in Chinese with English abstract).
      Kalkreuth, W., Macauley, G., 1987. Organic Petrology and Geochemical (Rock⁃Eval) Studies on Oil Shales and Coals from the Pictou and Antigonish Areas, Nova Scotia, Canada. Bulletin of Canadian Petroleum Geology, 35(3): 263-295. https://doi.org /10.35767/gscpgbull.35.3.263
      Ketcham, R. A., 2005. Forward and Inverse Modeling of Low⁃Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 58(1): 275-314. https://doi.org/10.2138/rmg.2005.58.11
      Landis, C. R., Castaño, J. R., 1995. Maturation and Bulk Chemical Properties of a Suite of Solid Hydrocarbons. Organic Geochemistry, 22(1): 137-149. https://doi.org/10.1016/0146⁃6380(95)90013⁃6
      Le Bayon, R., Brey, G. P., Ernst, W. G., et al., 2011. Experimental Kinetic Study of Organic Matter Maturation: Time and Pressure Effects on Vitrinite Reflectance at 400 ℃. Organic Geochemistry, 42(4): 340-355. https://doi.org/10.1016/j.orggeochem.2011.01.011
      Li, Z. Q., Yang, B., Han, Z. J., et al., 2022. Tectonic⁃ Thermal Evolution of Meso⁃Cenozoic Rift Basin in South Yellow Sea, Offshore Eastern China: Implications for Basin⁃Forming Mechanism and Thermal Evolution of Source Rocks. Earth Science, 47(5): 1652-1668 (in Chinese with English abstract).
      Liu, B., 2023. Organic Matter in Shales: Types, Thermal Evolution and Organic Pores. Earth Science, 48(12): 4641-4657 (in Chinese with English abstract).
      Liu, B., Mastalerz, M., Schieber, J., 2022. SEM Petrography of Dispersed Organic Matter in Black Shales: A Review. Earth⁃Science Reviews, 224: 103874. https://doi.org/10.1016/j.earscirev.2021.103874
      Liu, Y., Yang, C. Y., Xiao, D. Q., et al., 2017. Hydrocarbon Phase Limit and Conversion Process in the Deep Formation of Rift Lacustrine Basin from Qikou Sag of Bohai Bay Basin, Eastern China. Natural Gas Geoscience, 28(5): 703-712 (in Chinese with English abstract).
      Liu, Y. C., Qiu, N. S., Chang, J., et al., 2020. Application of Clumped Isotope Thermometry to Thermal Evolution of Sedimentary Basins: A Case Study of Shuntuoguole Area in Tarim Basin. Chinese Journal of Geophysics, 63(2): 597-611 (in Chinese with English abstract).
      Lohr, C. D., Hackley, P. C., 2021. Relating Tmax and Hydrogen Index to Vitrinite and Solid Bitumen Reflectance in Hydrous Pyrolysis Residues: Comparisons to Natural Thermal Indices. International Journal of Coal Geology, 242: 103768. https://doi.org/10.1016/j.coal.2021.103768
      Lopatin, N. V., 1971. Temperature and Geologic Time as Factors in Coalification. Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskay, 3: 95-106 (in Russian).
      Luo, Q. Y., Fariborz, G., Zhong, N. N., et al., 2020. Graptolites as Fossil Geo⁃Thermometers and Source Material of Hydrocarbons: An Overview of four Decades of Progress. Earth⁃Science Reviews, 200: 103000. https://doi.org/10.1016/j.earscirev.2019.103000
      Luo, Q. Y., Hao, J. Y., Li, K. W., et al., 2019. A New Parameter for the Thermal Maturity Assessment of Organic Matter from the Lower Palaeozoic Sediments: A Re⁃Study on the Optical Characteristics of Graptolite Periderms. Acta Geologica Sinica, 93(9): 2362-2371 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.09.017
      Mastalerz, M., Glikson, M., 2000. In⁃Situ Analysis of Solid Bitumen in Coal: Examples from the Bowen Basin and the Illinois Basin. International Journal of Coal Geology, 42(2/3): 207-220. https://doi.org/10.1016/S0166⁃5162(99)00040⁃3
      Mählmann, R. F., Le Bayon, R., 2016. Vitrinite and Vitrinite Like Solid Bitumen Reflectance in Thermal Maturity Studies: Correlations from Diagenesis to Incipient Metamorphism in Different Geodynamic Settings. International Journal of Coal Geology, 157: 52-73. https://doi.org/10.1016/j.coal.2015.12.008
      McCartney, J. T., Ergun, S., 1967. Optical Properties of Coals and Graphite. University of North Texas Libraries, Texas.
      McTavish, R. A., 1978. Pressure Retardation of Vitrinite Diagenesis, Offshore North⁃West Europe. Nature, 271: 648-650. https://doi.org/10.1038/271648a0
      Morrow, D. R., Issler, D. R., 1993. Calculation of Vitrinite Reflectance from Thermal Histories: A Comparison of Some Methods. AAPG Bulletin, 77(4): 610-624. https://doi.org/10.1306/bdff8cae⁃1718⁃11d7⁃8645000102c1865d
      Nielsen, S. B., Clausen, O. R., McGregor, E., 2017. Basin%Ro: A Vitrinite Reflectance Model Derived from Basin and Laboratory Data. Basin Research, 29(S1): 515-536. https://doi.org/10.1111/bre.12160
      Pepper, A. S., Corvi, P. J., 1995. Simple Kinetic Models of Petroleum Formation. Part I: Oil and Gas Generation from Kerogen. Marine and Petroleum Geology, 12(3): 291-319. https://doi.org/10.1016/0264⁃8172(95)98381⁃E
      Perkins, J. R., Fraser, A. J., Muxworthy, A. R., et al., 2023. Basin and Petroleum Systems Modelling to Characterise Multi⁃Source Hydrocarbon Generation: A Case Study on the Inner Moray Firth, UK North Sea. Marine and Petroleum Geology, 151: 106180. https://doi.org/10.1016/j.marpetgeo.2023.106180
      Peters, K. E., 2020. Short Review of Some Petroleum Geochemistry for Basin Modelers: Vitrinite Reflectance. Stanford Basin and Petroleum System Modeling Seminar, California.
      Peters, K. E., Burnham, A. K., Walters, C. C., 2015. Petroleum Generation Kinetics: Single versus Multiple Heating⁃Ramp Open⁃System Pyrolysis. AAPG Bulletin, 99(4): 591-616. https://doi.org/10.1306/11141414080
      Peters, K. E., Burnham, A. K., Walters, C. C., 2016. Petroleum Generation Kinetics: Single versus Multiple Heating⁃Ramp Open⁃System Pyrolysis: Reply. AAPG Bulletin, 100(4): 690-694. https://doi.org/10.1306/01141615244
      Peters, K. E., Burnham, A. K., Walters, C. C., et al., 2018a. Guidelines for Kinetic Input to Petroleum System Models from Open⁃System Pyrolysis. Marine and Petroleum Geology, 92: 979-986. https://doi.org/10.1016/j.marpetgeo.2017.11.024
      Peters, K. E., Hackley, P. C., Thomas, J. J., et al., 2018b. Suppression of Vitrinite Reflectance by Bitumen Generated from Liptinite during Hydrous Pyrolysis of Artificial Source Rock. Organic Geochemistry, 125: 220-228. https://doi.org/10.1016/j.orggeochem.2018.09.010
      Petersen, H. I., Schovsbo, N. H., Nielsen, A. T., 2013. Reflectance Measurements of Zooclasts and Solid Bitumen in Lower Paleozoic Shales, Southern Scandinavia: Correlation to Vitrinite Reflectance. International Journal of Coal Geology, 114: 1-18. https://doi.org/10.1016/j.coal.2013.03.013
      Price, L. C., 1983. Geologic Time as a Parameter in Organic Metamorphism and Vitrinite Reflectance as an Absolute Paleogeothermometer. Journal of Petroleum Geology, 6(1): 5-37. https://doi.org/10.1111/j.1747⁃5457.1983.tb00260.x
      Price, L. C., Barker, C. E., 1985. Suppression of Vitrinite Reflectance in Amorphous Rich Kerogen: A Major Unrecognized Problem. Journal of Petroleum Geology, 8(1): 59-84. https://doi.org/10.1111/j.1747⁃5457.1985.tb00191.x
      Qiu, N. S., Chang, J., Zhu, C. Q., et al., 2022. Thermal Regime of Sedimentary Basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth⁃Science Reviews, 224: 103884. https://doi.org/10.1016/j.earscirev.2021.103884
      Qiu, N. S., He, L. J., Chang, J., et al., 2020. Research Progress and Challenges of Thermal History Reconstruction in Sedimentary Basins. Petroleum Geology & Experiment, 42(5): 790-802 (in Chinese with English abstract).
      Qiu, N. S., Hu, S. B., He, L. J., 2019. Geothermal in Sedimentary Basin. China University of Petroleum Press, Qingdao (in Chinese).
      Qiu, N. S., Xu, W., Zuo, Y. H., et al., 2017. Evolution of Meso⁃Cenozoic Thermal Structure and Thermal⁃ Rheological Structure of the Lithosphere in the Bohai Bay Basin, Eastern North China Craton. Earth Science Frontiers, 24(3): 13-26 (in Chinese with English abstract).
      Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2014. Geothermal Evidence of Meso⁃Cenozoic Lithosphere Thinning in the Jiyang Sub⁃Basin, Bohai Bay Basin, Eastern North China Craton. Gondwana Research, 26(3/4): 1079-1092. https://doi.org/10.1016/j.gr.2013.08.011
      Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2015. Characteristics of Meso⁃Cenozoic Thermal Regimes in Typical Eastern and Western Sedimentary Basins of China. Earth Science Frontiers, 22(1): 157-168 (in Chinese with English abstract).
      Qiu, N. S., Zuo, Y. H., Xu, W., et al., 2016. Meso⁃ Cenozoic Lithosphere Thinning in the Eastern North China Craton: Evidence from Thermal History of the Bohai Bay Basin, North China. The Journal of Geology, 124(2): 195-219. https://doi.org/10.1086/684830
      Quigley, T. M., MacKenzie, A. S., 1988. The Temperatures of Oil and Gas Formation in the Sub⁃Surface. Nature, 333(6173): 549-552. https://doi.org/10.1038/333549a0
      Ritter, U., 1984. The Influence of Time and Temperature on Vitrinite Reflectance. Organic Geochemistry, 6: 473-480. https://doi.org/10.1016/0146⁃6380(84)90070⁃6
      Ritter, U., Duddy, I. R., Mork, A., et al., 1996. Temperature and Uplift History of Bjornoya (Bear Island), Barents Sea. Petroleum Geoscience, 2(2): 133-144. https://doi.org/10.1144/petgeo.2.2.133
      Sanders, M. M., Jubb, A. M., Hackley, P. C., et al., 2022. Molecular Mechanisms of Solid Bitumen and Vitrinite Reflectance Suppression Explored Using Hydrous Pyrolysis of Artificial Source Rock. Organic Geochemistry, 165: 104371. https://doi.org/10.1016/j.orggeochem.2022.104371
      Saxby, J. D., Bennett, A. J. R., Corcoran, J. F., et al., 1986. Petroleum Generation: Simulation over Six Years of Hydrocarbon Formation from Torbanite and Brown Coal in a Subsiding Basin. Organic Geochemistry, 9(2): 69-81. https://doi.org/10.1016/0146⁃6380(86)90088⁃4
      Schenk, O., Peters, K. E., Burnham, A. K., 2017. Evaluation of Alternatives to Easy%Ro for Calibration of Basin and Petroleum System Models. 79th EAGE Conference and Exhibition 2017, Paris. https://doi.org/10.3997/2214⁃4609.201700614
      Schmidt, J. S., Menezes, T. R., Souza, I. V. A. F., et al., 2019. Comments on Empirical Conversion of Solid Bitumen Reflectance for Thermal Maturity Evaluation. International Journal of Coal Geology, 201: 44-50. https://doi.org/10.1016/j.coal.2018.11.012
      Shi, L., 2004. Study on Tectonic Thermal Evolution and Quantitative Evaluation of Geothermal Resources in Songliao Basin: A Case Study of Dumeng Area. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      Stainforth, J. G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine and Petroleum Geology, 26(4): 552-572. https://doi.org/10.1016/j.marpetgeo.2009.01.006
      Stasiuk, L. D., 1994. Fluorescence Properties of Palaeozoic Oil⁃Prone Alginite in Relation to Hydrocarbon Generation, Williston Basin, Saskatchewan, Canada. Marine and Petroleum Geology, 11(2): 219-231. https://doi.org/10.1016/0264⁃8172(94)90098⁃1
      Suggate, R. P., 1998. Relations between Depth of Burial, Vitrinite Reflectance and Geothermal Gradient. Journal of Petroleum Geology, 21(1): 5-32. https://doi.org/10.1111/j.1747⁃5457.1998.tb00644.x
      Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74: 1559-1570. https://doi.org/10.1306/0C9B251F⁃1710⁃11D7⁃8645000102C1865D.
      Tang, X. Y., Zhong, C., Yang, S. C., et al., 2023. Characteristics and Influence Factors of the Present Geothermal Field for Basins in China's Offshore and Adjacent Areas. Acta Geologica Sinica, 97(3): 911-921(in Chinese with English abstract). doi: 10.1111/1755-6724.15061
      Tian, Y. T., Yuan, Y. S., Hu, S. B., et al., 2017. Application of Low⁃Temperature Thermochronology to Sedimentary Basins: Case Studies in the Northern Sichuan Basin. Earth Science Frontiers, 24(3): 105-115 (in Chinese with English abstract).
      Tissot, B. P., Pelet, R., Ungerer, P., 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71(12): 1445-1466. https://doi.org/10.1306/703c80e7⁃1707⁃11d7⁃8645000102c1865d
      Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer⁃Verlag, Berlin. https://doi.org/10.1007/978⁃3⁃642⁃87813⁃8
      van Krevelen, D. W., 1961. Coal: Typology, Chemistry, Physics, Constitution. Elsevier, Amsterdam.
      Wang, F. Y., Fu, J. M., Liu, D. H., 1993. Characteristics and Classification of Organic Components of Coal and Terrigenous Organic Matter Source Rocks. Chinese Science Bulletin, 38(23): 2164-2168 (in Chinese). doi: 10.1360/csb1993-38-23-2164
      Wang, F. Y., He, P., Cheng, D. S., et al., 1994. Evaluation of Organic Maturity of High⁃over⁃Mature Source Rocks in Lower Paleozoic. Natural Gas Geoscience, 5(6): 1-14 (in Chinese with English abstract).
      Wang, F. Y., Xiao, X. M., He, P., et al., 1995. Advances and State of the Art of Application of Organic Petrology in Petroleum Exploration: An Overview. Earth Science Frontiers, 2(3-4): 189-196 (in Chinese with English abstract).
      Wang, J. Y., Qiu, N. S., 1992. Methods on Studies of Paleogeotemperature on Sedimentary Basins with Oil and Gas. Progress in Geophysics, 7(4): 46-62 (in Chinese with English abstract).
      Wang, Y., Qiu, N. S., Ma, Z. L., et al., 2020. Evaluation of Equivalent Relationship between Vitrinite Reflectance and Solid Bitumen Reflectance. Journal of China University of Mining & Technology, 49(3): 563-575 (in Chinese with English abstract).
      Waples, D. W., 1980. Time and Temperature in Petroleum Formation: Application of Lopatin's Method to Petroleum Exploration. AAPG Bulletin, 64(6): 916-926. https://doi.org/10.1306/2F9193D2⁃16CE⁃11D7⁃8645000102C1865D
      Waples, D. W., 2016. Petroleum Generation Kinetics: Single versus Multiple Heating⁃Ramp Open⁃System Pyrolysis: Discussion. AAPG Bulletin, 100(4): 683-689. https://doi.org/10.1306/01141615146
      Waples, D. W., 2022. A Calibrated Empirical Method to Choose a Factors for Kerogen Kinetics. Part 1: Using Easy%Ro to Calculate Thermal Stress. Marine and Petroleum Geology, 141: 105590. https://doi.org/10.1016/j.marpetgeo.2022.105590
      Waples, D. W., Marzi, R. W., 1998. The Universality of the Relationship between Vitrinite Reflectance and Transformation Ratio. Organic Geochemistry, 28(6): 383-388. https://doi.org/10.1016/S0146⁃6380(97)00122⁃8
      Waples, D. W., Nowaczewski, V. S., 2013. Source⁃Rock Kinetics. Technical Report, Sirius Exploration Geochemistry.
      Wei, L., Wang, Y. Z., Mastalerz, M., 2016. Comparative Optical Properties of Macerals and Statistical Evaluation of Mis⁃Identification of Vitrinite and Solid Bitumen from Early Mature Middle Devonian⁃Lower Mississippian New Albany Shale: Implications for Thermal Maturity Assessment. International Journal of Coal Geology, 168: 222-236. https://doi.org/10.1016/j.coal.2016.11.003
      Wenger, L. M., Baker, D. R., 1987. Variations in Vitrinite Reflectance with Organic Facies—Examples from Pennsylvanian Cyclothems of the Midcontinent, U. S. A., Organic Geochemistry, 11(5): 411-416. https://doi.org/10.1016/0146⁃6380(87)90075⁃1
      Wood, D. A., 1988. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72(2): 115-134. https://doi.org/10.1306/703C8263⁃1707⁃11D7⁃8645000102C1865D
      Wood, D. A., 2017. Re⁃Establishing the Merits of Thermal Maturity and Petroleum Generation Multi⁃Dimensional Modeling with an Arrhenius Equation Using a Single Activation Energy. Journal of Earth Science, 28(5): 804-834. https://doi: 10.1007/s12583⁃017⁃0735⁃7
      Wu, L. L., Geng, A. S., 2016. Differences in the Thermal Evolution of Hopanes and Steranes in Free and Bound Fractions. Organic Geochemistry, 101: 38-48. https://doi.org/10.1016/j.orggeochem.2016.08.009
      Xiao, X. M., Jin, K. L., 1990. A Petrographic Classification of Macerals in Terrestrial Hydrocarbon Source Rocks in China and Their Organic Petrological Characteristics. Acta Sedimentologica Sinica, 8(3): 22-34 (in Chinese with English abstract).
      Yang, S. C., Hu, S. B., Cai, D. S., et al., 2004. Present⁃Day Heat Flow, Thermal History and Tectonic Subsidence of the East China Sea Basin. Marine and Petroleum Geology, 2004, 21(9): 1095-1105. https://doi.org/ 10.1016/j.marpetgeo.2004.05.007
      Zheng, X. W., Schwark, L., Stockhausen, M., et al., 2023. Effects of Synthetic Maturation on Phenanthrenes and Dibenzothiophenes over a Maturity Range of 0.6 to 4.7% Easy%Ro. Marine and Petroleum Geology, 153: 106285. https://doi.org/10.1016/j.marpetgeo.2023.106285
      Zhu, C. Q., Qiu, N. S., Cao, H. Y., et al., 2017. Tectonic⁃Thermal Evolution of the Eastern Sichuan Basin: Constraints from Vitrinite Reflectance and Apatite Fission Tracks Data. Earth Science Frontiers, 24(3): 94-104 (in Chinese with English abstract).
      代世峰, 唐跃刚, 姜尧发, 等, 2021. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅰ: 镜质体. 煤炭学报, 46(6): 1821-1832.
      胡圣标, 龙祖烈, 朱俊章, 等, 2019. 珠江口盆地地温场特征及构造‒热演化. 石油学报, 40(S1): 178-187. doi: 10.7623/syxb2019S1015
      胡圣标, 汪集旸, 张容燕, 1999a. 利用镜质体反射率数据估算地层剥蚀厚度. 石油勘探与开发, 26(4): 42-45.
      胡圣标, 张容燕, 罗毓晖, 等, 1999b. 渤海盆地热历史及构造‒热演化特征. 地球物理学报, 42(6): 748-755.
      金奎励, 刘大锰, 姚素平, 等, 1997. 中国油、气源岩有机成分成因划分及地化特征. 沉积学报, 15(2): 160-163.
      李志强, 杨波, 韩自军, 等, 2022. 南黄海中‒新生代裂谷盆地构造‒热演化: 对成盆机制和烃源岩热演化的指示. 地球科学, 47(5): 1652-1668. doi: 10.3799/dqkx.2021.152
      刘贝, 2023. 泥页岩中有机质: 类型、热演化与有机孔隙. 地球科学, 48(12): 4641-4657. http://www.earth-science.net/article/id/34d609c6-fc43-42fb-8b6a-2d855506ef67
      刘岩, 杨池银, 肖敦清, 等, 2017. 裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地岐口凹陷为例. 天然气地球科学, 28(5): 703-702.
      刘雨晨, 邱楠生, 常健, 等, 2020. 碳酸盐团簇同位素在沉积盆地热演化中的应用——以塔里木盆地顺托果勒地区为例. 地球物理学报, 63(2): 597-611.
      罗情勇, 郝婧玥, 李可文, 等, 2019. 下古生界有机质成熟度评价新参数: 笔石表皮体光学特征再研究. 地质学报, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017
      邱楠生, 何丽娟, 常健, 等, 2020. 沉积盆地热历史重建研究进展与挑战. 石油实验地质, 42(5): 790-802.
      邱楠生, 胡圣标, 何丽娟, 2019. 沉积盆地地热学. 青岛: 中国石油大学出版社.
      邱楠生, 许威, 左银辉, 等, 2017. 渤海湾盆地中‒新生代岩石圈热结构与热‒流变学演化. 地学前缘, 24(3): 13-26.
      邱楠生, 左银辉, 常健, 等, 2015. 中国东西部典型盆地中‒新生代热体制对比. 地学前缘, 22(1): 157-168.
      施龙, 2004. 松辽盆地构造热演化及地热资源定量评价研究——以杜蒙地区为例(博士学位论文). 广州: 中国科学院广州地球化学研究所.
      唐晓音, 钟畅, 杨树春, 等, 2023. 中国海及邻区盆地现今地温场特征及其影响因素. 地质学报, 97(3): 911-921.
      田云涛, 袁玉松, 胡圣标, 等, 2017. 低温热年代学在沉积盆地研究中的应用: 以四川盆地北部为例. 地学前缘, 24(3): 105-115.
      王飞宇, 傅家谟, 刘德汉, 1993. 煤和陆源有机质烃源岩特点和有机组分分类. 科学通报, 38(23): 2164-2168.
      王飞宇, 何萍, 程顶胜, 等, 1994. 下古生界高‒过成熟烃源岩有机成熟度评价. 天然气地球科学, 5(6): 1-14.
      王飞宇, 肖贤明, 何萍, 等, 1995. 有机岩石学在油气勘探中应用的现状和发展. 地学前缘, 2(3-4): 189-196.
      汪集旸, 邱楠生, 1992. 含油气沉积盆地古地温研究方法. 地球物理学进展, 7(4): 46-62.
      王晔, 邱楠生, 马中良, 等, 2020. 固体沥青反射率与镜质体反射率的等效关系评价. 中国矿业大学学报, 49(3): 563-575.
      肖贤明, 金奎励, 1990. 中国陆相源岩显微组分的分类及其岩石学特征. 沉积学报, 8(3): 22-34.
      朱传庆, 邱楠生, 曹环宇, 等, 2017. 四川盆地东部构造‒热演化: 来自镜质体反射率和磷灰石裂变径迹的约束. 地学前缘, 24(3): 94-104.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (560) PDF downloads(52) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return