• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Zhang Anguang, Liang Ying, Ma Rui, 2024. Adsorption/Desorption Behavior of NH4-N under Surface Water-Groundwater Interaction and Its Impact on N Migration and Transformation. Earth Science, 49(10): 3761-3772. doi: 10.3799/dqkx.2023.188
    Citation: Zhang Anguang, Liang Ying, Ma Rui, 2024. Adsorption/Desorption Behavior of NH4-N under Surface Water-Groundwater Interaction and Its Impact on N Migration and Transformation. Earth Science, 49(10): 3761-3772. doi: 10.3799/dqkx.2023.188

    Adsorption/Desorption Behavior of NH4-N under Surface Water-Groundwater Interaction and Its Impact on N Migration and Transformation

    doi: 10.3799/dqkx.2023.188
    • Received Date: 2023-07-24
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • The migration and transformation of NH4-N are influenced by the interactions between surface water and groundwater. However, the mechanisms remain poorly understood. Continuous monitoring of the water level and its hydrochemical composition was conducted in the Shahu site. Column experiments and reactive transport modeling were applied to identify the migration and transformation of NH4-N under conditions of both surface water recharge and groundwater discharge. In this study it indicates that most injected NH4-N is adsorbed on shallow sediment. Infiltration of surface water enhances desorption of NH4-N from sediment particle and subsequent nitrification reactions. In contrast, adsorption of NH4-N on sediment is favored during discharge of NH4-N containing groundwater. Simulating results emphasize the crucial role of cation exchange in NH4-N mobility. Alterations in the hydrogeochemical environment during surface water-groundwater interactions impact the NH4-N adsorption/desorption behaviors and associated biogeochemical reactions.

       

    • loading
    • Beeckman, F., Motte, H., Beeckman, T., 2018. Nitrification in Agricultural Soils: Impact, Actors and Mitigation. Current Opinion in Biotechnology, 50: 166-173. https://doi.org/10.1016/j.copbio.2018.01.014
      Böhlke, J. K., Smith, R. L., Miller, D. N., 2006. Ammonium Transport and Reaction in Contaminated Groundwater: Application of Isotope Tracers and Isotope Fractionation Studies. Water Resources Research, 42(5): W05411. https://doi.org/10.1029/2005wr004349
      Chen, Y. X., Su, X. S., Wan, Y. Y., et al., 2022. Nitrogen Biogeochemical Reactions during Bank Filtration Constrained by Hydrogeochemical and Isotopic Evidence: A Case Study in a Riverbank Filtration Site along the Second Songhua River, NE China. Applied Geochemistry, 140: 105272. https://doi.org/10.1016/j.apgeochem.2022.105272
      Choi, A., Cho, H., Kim, S. H., et al., 2016. Rates of N2 Production and Diversity and Abundance of Functional Genes Associated with Denitrification and Anaerobic Ammonium Oxidation in the Sediment of the Amundsen Sea Polynya, Antarctica. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 123: 113-125. https://doi.org/10.1016/j.dsr2.2015.07.016
      Covatti, G., Grischek, T., 2021. Sources and Behavior of Ammonium during Riverbank Filtration. Water Research, 191: 116788. https://doi.org/10.1016/j.watres.2020.116788
      Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d
      Gan, Y. Q., Zhao, K., Deng, Y. M., et al., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26(5): 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
      He, T. X., Xie, D. T., Ni, J. P., et al., 2020. Nitrous Oxide Produced Directly from Ammonium, Nitrate and Nitrite during Nitrification and Denitrification. Journal of Hazardous Materials, 388: 122114. https://doi.org/10.1016/j.jhazmat.2020.122114
      Hu, Y. L., Sun, Z. Y., Ma, R., 2023. Springs Emerging along the Elevation Gradient Indicate Intensive Groundwater-Surface Water Exchange in an Alpine Headwater Catchment, Northwestern China. Journal of Earth Science, 34(1): 181-193. https://doi.org/10.1007/s12583-021-1548-2
      Huang, J. Y., Kankanamge, N. R., Chow, C., et al., 2018. Removing Ammonium from Water and Wastewater Using Cost-Effective Adsorbents: A Review. Journal of Environmental Sciences, 63: 174–197. https://doi.org/10.1016/j.jes.2017.09.009
      Jellali, S., Diamantopoulos, E., Kallali, H., et al., 2010. Dynamic Sorption of Ammonium by Sandy Soil in Fixed Bed Columns: Evaluation of Equilibrium and Non-Equilibrium Transport Processes. Journal of Environmental Management, 91(4): 897-905. https://doi.org/10.1016/j.jenvman.2009.11.006
      Jiang, Q. H., Jin, G. Q., Tang, H. W., et al., 2022. Ammonium (NH4+) Transport Processes in the Riverbank under Varying Hydrologic Conditions. The Science of the Total Environment, 826: 154097. https://doi.org/10.1016/j.scitotenv.2022.154097
      Kopprio, G. A., Dutto, M. S., Garzón Cardona, J. E., et al., 2018. Biogeochemical Markers across a Pollution Gradient in a Patagonian Estuary: A Multidimensional Approach of Fatty Acids and Stable Isotopes. Marine Pollution Bulletin, 137: 617–626. https://doi.org/10.1016/j.marpolbul.2018.10.059
      Liang, Y., Ma, R., Nghiem, A., et al., 2022. Sources of Ammonium Enriched in Groundwater in the Central Yangtze River Basin: Anthropogenic or Geogenic? Environmental Pollution, 306: 119463. https://doi.org/10.1016/j.envpol.2022.119463
      Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
      Liu, Y. Y., Liu, C. X., Nelson, W. C., et al., 2017. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns. Environmental Science & Technology, 51(9): 4877-4886. https://doi.org/10.1021/acs.est.6b05018
      Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741(in Chinese with English abstract).
      Mazloomi, F., Jalali, M., 2019. Effects of Vermiculite, Nanoclay and Zeolite on Ammonium Transport through Saturated Sandy Loam Soil: Column Experiments and Modeling Approaches. CATENA, 176: 170-180. https://doi.org/10.1016/j.catena.2019.01.014
      Nakagawa, K., Amano, H., Takao, Y. J., et al., 2017. On the Use of Coprostanol to Identify Source of Nitrate Pollution in Groundwater. Journal of Hydrology, 550: 663-668. https://doi.org/10.1016/j.jhydrol.2017.05.038
      Naranjo, R. C., Niswonger, R. G., Davis, C. J., 2015. Mixing Effects on Nitrogen and Oxygen Concentrations and the Relationship to Mean Residence Time in a Hyporheic Zone of a Riffle-Pool Sequence. Water Resources Research, 51(9): 7202-7217. https://doi.org/10.1002/2014wr016593
      Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. In Chapter 43 of Section A: Groundwater in Book 6 Modeling Techniques. U. S. Geological Survey. https://doi.org/10.3133/tm6A43
      Prommer, H., Tuxen, N., Bjerg, P. L., 2006. Fringe-Controlled Natural Attenuation of Phenoxy Acids in a Landfill Plume: Integration of Field-Scale Processes by Reactive Transport Modeling. Environmental Science & Technology, 40(15): 4732-4738. https://doi.org/10.1021/es0603002
      Schaefer, M. V., Ying, S. C., Benner, S. G., et al., 2016. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Environmental Science & Technology, 50(7): 3521-3529. https://doi.org/10.1021/acs.est.5b04986
      Smith, R. L., Böhlke, J. K., Song, B., et al., 2015. Role of Anaerobic Ammonium Oxidation (Anammox) in Nitrogen Removal from a Freshwater Aquifer. Environmental Science & Technology, 49(20): 12169-12177. https://doi.org/10.1021/acs.est.5b02488
      Song, T., Zhang, X. L., Li, J., et al., 2021. A Review of Research Progress of Heterotrophic Nitrification and Aerobic Denitrification Microorganisms (HNADMs). The Science of the Total Environment, 801: 149319. https://doi.org/10.1016/j.scitotenv.2021.149319
      Sun, L. Q., Liang, X., Jin, M. G., et al., 2022. Sources and Fate of Excessive Ammonium in the Quaternary Sediments on the Dongting Plain, China. The Science of the Total Environment, 806(Pt 1): 150479. https://doi.org/10.1016/j.scitotenv.2021.150479
      Wang, J. L., Chu, L. B., 2016. Biological Nitrate Removal from Water and Wastewater by Solid-Phase Denitrification Process. Biotechnology Advances, 34(6): 1103-1112. https://doi.org/10.1016/j.biotechadv.2016.07.001
      Wang, L. F., Wang, Y. T., Li, Y., et al., 2022. Effect of Water Chemistry on Nitrogen Transformation, Dissolved Organic Matter Composition and Microbial Community Structure in Hyporheic Zone Sediment Columns. Environmental Research, 215(Pt 1): 114246. https://doi.org/10.1016/j.envres.2022.114246
      Wu, Q. H., Zheng, C. M., Zhang, J. F., et al., 2017. Nitrate Removal by a Permeable Reactive Barrier of FeO: A Model-Based Evaluation. Journal of Earth Science, 28(3): 447-456. https://doi.org/10.1007/s12583-016-0924-2
      Wu, X. C., Ma, T., Wang, Y. X., 2020. Surface Water and Groundwater Interactions in Wetlands. Journal of Earth Science, 31(5): 1016-1028. https://doi.org/10.1007/s12583-020-1333-7
      Xiong, Y. J., Du, Y., Deng, Y. M., et al., 2021. Contrasting Sources and Fate of Nitrogen Compounds in Different Groundwater Systems in the Central Yangtze River Basin. Environmental Pollution, 290: 118119. https://doi.org/10.1016/j.envpol.2021.118119
      Xu, J., Liang, Y., Zhang, Z. C., et al., 2023. Effects of Seasonal Variation in Organic Matter in Groundwater on Reactive Nitrogen Transport in the Jianghan Plain. Bulletin of Geological Science and Technology, 42(4): 228-240, 298(in Chinese with English abstract).
      Yan, A. L., Guo, X. Y., Hu, D. H., et al., 2022. Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water. Water, 14(8): 1237. https://doi.org/10.3390/w14081237
      Yan, A. L., Liu, C. X., Liu, Y. Y., et al., 2018. Effect of Ion Exchange on the Rate of Aerobic Microbial Oxidation of Ammonium in Hyporheic Zone Sediments. Environmental Science and Pollution Research, 25(9): 8880-8887. https://doi.org/10.1007/s11356-018-1217-x
      Yu, Q., Zhang, Y., Dong, T., et al., 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9): 3420-3431(in Chinese with English abstract).
      Zhang, Y. T., Wu, J. H., Xu, B., 2018. Human Health Risk Assessment of Groundwater Nitrogen Pollution in Jinghui Canal Irrigation Area of the Loess Region, Northwest China. Environmental Earth Sciences, 77(7): 273. https://doi.org/10.1007/s12665-018-7456-9
      Zhang, Z. C., Liang, Y., Xu, J., et al., 2024. Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content. Earth Science, 49(9): 3428-3439.
      马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
      许洁, 梁莹, 张振超, 等, 2023. 江汉平原地下水中有机质季节变化对氮反应迁移的影响. 地质科技通报, 42(4): 228-240, 298.
      余倩, 张宇, 董听, 等, 2023. 地表水-地下水相互作用对砷在浅层地下水系统中运移的影响. 地球科学, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146
      张振超, 梁莹, 许洁, 等, 2024. 高砷地下水中氮循环对砷释放过程的影响. 地球科学, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(4)

      Article views (535) PDF downloads(44) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return