• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 2
    Feb.  2025
    Turn off MathJax
    Article Contents
    Zhang Guanjie, Cheng Qi, Zhang Lei, Liu Wenchao, Zhao Yujia, Wu Hao, Shen Chuanbo, 2025. Calculation of 3D Reservoir Rock Mechanical Parameters of Metamorphic Rock Reservoirs in the Bozhong 19⁃6 Gas Field of the Bohai Bay Basin and Their Significance. Earth Science, 50(2): 551-568. doi: 10.3799/dqkx.2023.195
    Citation: Zhang Guanjie, Cheng Qi, Zhang Lei, Liu Wenchao, Zhao Yujia, Wu Hao, Shen Chuanbo, 2025. Calculation of 3D Reservoir Rock Mechanical Parameters of Metamorphic Rock Reservoirs in the Bozhong 19⁃6 Gas Field of the Bohai Bay Basin and Their Significance. Earth Science, 50(2): 551-568. doi: 10.3799/dqkx.2023.195

    Calculation of 3D Reservoir Rock Mechanical Parameters of Metamorphic Rock Reservoirs in the Bozhong 19⁃6 Gas Field of the Bohai Bay Basin and Their Significance

    doi: 10.3799/dqkx.2023.195
    • Received Date: 2023-12-22
      Available Online: 2025-02-26
    • Publish Date: 2025-02-25
    • Triaxial compaction test, Brazilian test, and triaxial shear test were conducted to characterize the rock mechanical parameters of buried⁃hill reservoirs in the metamorphic rocks of Bozhong 19⁃6 gas field in Bohai Bay Basin and to provide reliable basic data for subsequent numerical simulation of ground stress field and reservoir fractures in this region. Single⁃well dynamic rock mechanical parameters were computed using array acoustic curves, and the single⁃well distributions of static rock mechanical parameters were determined via dynamic⁃static calibration; Prestack seismic multiattribute detection was adopted to deterministically inverse 3D heterogeneous rock mechanical fields and clarify the spatial distribution of rock mechanical parameters. On this basis, physical property test, whole⁃rock mineral analysis and mercury intrusion testing data were used to analyze the main control factors on the rock mechanical parameters. Then the fracture development index and lithological identification charts were built using static rock mechanical parameters. It was found the metamorphic buried⁃hill reservoirs in Bozhong 19⁃6 gas field of Bohai Bay Basin had Young's modulus within 20 to 60 GPa, Poisson's ratio within 0.15 to 0.25, tensile strength within 5 to 15 MPa, and internal friction angle within 30° to 50°. The horizontal distributions of the rock mechanical parameters were highly heterogeneous, and their vertical distributions were mainly related to tectonic properties and the weathering effect, and reflected the physical properties of reservoirs to some extent. Reservoir physical properties, concentrations of different minerals, and pore radius were the main controlling factors of the rock mechanical parameters. The metamorphic buried⁃hill reservoirs were featured by well⁃developed fractures, and complex lithology, and the reservoir fractures and lithology cannot be accurately identified using routine methods. In comparison, the fracture development index, and lithological identification charts built on basis of static rock mechanical parameters are significant in guiding the evaluation of fracture development degree and complex lithologic division in metamorphic buried⁃hill reservoirs.

       

    • loading
    • Bowers, G. L., 1995. Pore Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms Besides Undercompaction. SPE Drilling & Completion, 10(2): 89-95. https://doi.org/10.2118/27488⁃pa
      Cao, Z. L., Zheng, H. J., Gou, Y. C., et al., 2009. Method of Prediction and Application on Stochastical Simulating 3D Parameter Field of Rock Mechanics. Geoscience, 23(6): 1126-1130(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2009.06.018
      Cao, Z. Z., Lu, X. L., Mo, H. Y., et al., 2023. Ultimate Bearing Capacity of Coralline Sand Foundation Under High Internal Friction Angle. Chinese Journal of Rock Mechanics and Engineering, 42(S1): 3609-3617(in Chinese with English abstract).
      Chang, C. D., Zoback, M. D., Khaksar, A., 2006. Empirical Relations between Rock Strength and Physical Properties in Sedimentary Rocks. Journal of Petroleum Science and Engineering, 51(3/4): 223-237. https://doi.org/10.1016/j.petrol.2006.01.003
      Chen, M., 2004. Review of Study on Rock Mechanics at Great Depth and Its Applications to Petroleum Engineering of China. Chinese Journal of Rock Mechanics and Engineering, 23(14): 2455-2462(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.14.030
      Cheng, Z. L., Sui, W. B., Ning, Z. F., et al., 2018. Microstructure Characteristics and Its Effects on Mechanical Properties of Digital Core. Chinese Journal of Rock Mechanics and Engineering, 37(2): 449-460(in Chinese with English abstract).
      Du, T., Qu, X. Y., Wang, Q. B., et al., 2023. Vertical Evolution Characteristics of Compaction Diagenetic Fractures in Glutenite Reservoirs of Kongdian Formation in Bozhong 19⁃6 Condensate Gas Field. Journal of Jilin University (Earth Science Edition), 53(1): 17-29(in Chinese with English abstract).
      Gong, Z. S., 2004. Neotectonics and Petroleum Accumulation in Offshore Chinese Basins. Earth Science, 29(5): 513-517(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.05.002
      Han, D. H., Nur, A., Morgan, D., 1986. Effects of Porosity and Clay Content on Wave Velocities in Sandstones. Geophysics, 51(11): 2093-2107. https://doi.org/10.1190/1.1442062
      Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2009. Charging of the Neogene Penglai 19⁃3 Field, Bohai Bay Basin, China: Oil Accumulation in a Young Trap in an Active Fault Zone. AAPG Bulletin, 93(2): 155-179. https://doi.org/10.1306/09080808092
      Hou, L. L., Liu, X. J., Liang, L. X., et al., 2020. Investigation of Coal and Rock Geo⁃Mechanical Properties Evaluation Based on the Fracture Complexity and Wave Velocity. Journal of Natural Gas Science and Engineering, 75: 103133. https://doi.org/10.1016/j.jngse.2019.103133
      Jia, L. C., Chen, Y., Yu, S., 2018. Analysis of Wellbore Stability for Horizontal Wells Based on Unified Strength Theory. FaultBlock Oil & Gas Field, 25(5): 639-643(in Chinese with English abstract).
      Li, K. H., Cheng, Y., Yin, Z. Y., et al., 2020. Size Effects in a Transversely Isotropic Rock under Brazilian Tests: Laboratory Testing. Rock Mechanics and Rock Engineering, 53(6): 2623-2642. https://doi.org/10.1007/s00603⁃020⁃02058⁃7
      Li, X. B., Gong, F. Q., 2021. Research Progress and Prospect of Deep Mining Rock Mechanics Based on Coupled Static⁃Dynamic Loading Testing. Journal of China Coal Society, 46(3): 846-866(in Chinese with English abstract).
      Li, X. Y., Qin, R. B., 2023. Method of Fracture Characterization and Productivity Prediction of 19⁃6 Buried⁃Hill Fractured Reservoirs, Bohai Bay Basin. Earth Science, 48(2): 475-487(in Chinese with English abstract).
      Li, J., Kong, X. C., Song, M. S., et al., 2019. Study on the Influence of Reservoir Rock Micropore Structure on Rock Mechanical Properties and Crack Propagation. Rock and Soil Mechanics, 40(11): 4149-4156, 4164(in Chinese with English abstract).
      Liu, J. H., Wu, C., Tao, X. H., 2020. Three⁃Dimensional Modeling Method for Drilling Rock Mechanics and Its Field Application. Drilling & Production Technology, 43(1): 13-16, 7-8(in Chinese with English abstract). doi: 10.3969/J.ISSN.1006-768X.2020.01.04
      Lu, B. P., Bao, H. Z., 2005. Advances in Calculation Methods for Rock Mechanics Parameters. Petroleum Drilling Techniques, 33(5): 44-47(in Chinese with English abstract). doi: 10.3969/j.issn.1001-0890.2005.05.010
      Lu, S. K., Wang, D., Li, Y. K., et al., 2015. Research on Three⁃Dimensional Mechanical Parameters' Distribution of the Tight Sandstone Reservoirs in Daniudi Gasfield. Natural Gas Geoscience, 26(10): 1844-1850(in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2015.10.1844
      Ni, J. L., Xia, B., 2006. Fault Block Movement and Formation of Buried Hill Hydrocarbon Reservoir: Taking Bohai Bay Basin as an Example. Natural Gas Industry, 26(2): 32-35, 161-162(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.2006.02.009
      Peng, X. D., Zhang, H., Wang, X. G., et al., 2023. Enhanced Water⁃Drive Recovery Based on Microscopic Seepage Mechanism for Low Permeability Glutenite Reservoir with Ternary Pore⁃Throat Structure Charateristics of WS Field. Earth Science, 48(8): 2960-2978(in Chinese with English abstract).
      Qi, Y. M., 2022. Microscopic Characteristics of Pores and Controlling Factors of Bedrock Buried Hill Reservoirs in Bozhong 19⁃6 Gasfield of Bohai Sea. Complex Hydrocarbon Reservoirs, 15(2): 12-16(in Chinese with English abstract).
      Rickman, R., Mullen, M., Petre, E., et al., 2008. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale. SPE Annual Technical Conference and Exhibition. September 21-24, 2008. Denver, Colorado, USA. SPE. https://doi.org/10.2118/115258-ms
      Shi, H. S., Wang, Q. B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19⁃6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.01.005
      Song, G. M., Zhang, Y., Li, H. Y., et al., 2020. Types and Identification Characteristics of Archean Metamorphic Rocks of Buried Hill in 19: 6 Area of Bozhong Sag. Global Geology, 39(2): 344-352(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2020.02.009
      Sun, J. M., Han, Z. L., Qin, R. B., et al., 2015. Log Evaluation Method of Fracturing Performance in Tight Gas Reservoir. Acta Petrolei Sinica, 36(1): 74-80(in Chinese with English abstract).
      Wang, D. Y., Liu, X. J., Deng, H., et al., 2022. Characteristics of the Meso⁃Cenozoic Tectonic Transformation and Its Control on the Formation of Large⁃Scale Reservoirs in the Archean Buried Hills in Bozhong 19⁃6 Area, Bohai Bay Basin. Oil & Gas Geology, 43(6): 1334-1346(in Chinese with English abstract).
      Wang, J. F., Yang, S., Li, S. H., et al., 2023. Microscopic Pore Structure and Rock Mechanics Characteristics of Basalt Reservoir in Southwest Sichuan. Unconventional Oil & Gas, 10(4): 126-131, 138(in Chinese with English abstract).
      Wu, Z. P., Hou, X. B., Li, W., 2007. Discussion on Mesozoic Basin Patterns and Evolution in the Eastern North China Block. Geotectonica et Metallogenia, 31(4): 385-399(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2007.04.001
      Xu, C. G., Du, X. F., Liu, X. J., et al., 2020. Formation Mechanism of High⁃Quality Deep Buried⁃Hill Reservoir of Archaean Metamorphic Rocks and Its Significance in Petroleum Exploration in Bohai Sea Area. Oil & Gas Geology, 41(2): 235-247, 294(in Chinese with English abstract).
      Xue, Y. A., Wei, A. J., Peng, J. S., et al., 2016. Accumulation Models and Regularities of Large⁃Middle Scale Oilfields in Bohai Sea, Bohai Bay Basin. China Offshore Oil and Gas, 28(3): 10-19(in Chinese with English abstract).
      Ye, T., Niu, C. M., Wang, Q. B., et al., 2021. Characteristics and Controlling Factors of Large Bedrock Buried⁃Hill Reservoirs in the Bohai Bay Basin: A Case Study of the BZ19⁃6 Condensate Field. Acta Geologica Sinica, 95(6): 1889-1902(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.06.015
      Yin, S., Sun, X. G., Wu, Z. H., et al., 2022. Coupling Control of Tectonic Evolution and Fractures on the Upper Paleozoic Gas Reservoirs in the Northeastern Margin of the Ordos Basin. Journal of Central South University (Science and Technology), 53(9): 3724-3737(in Chinese with English abstract).
      Yin, S., Sun, X. G., Wu, Z. H., et al., 2022. Oil Enrichment Law of the Jurassic Yan'an Formation, Hongde Block, Longdong area, Ordos Basin. Oil & Gas Geology, 43(5): 1167-1179(in Chinese with English abstract).
      Zhao, J. Y., Ji, D. S., Wu, J., et al., 2022. Research on Rock Mechanics Parameters of the Jurassic⁃Cretaceous Reservoir in the Sikeshu Sag, Junggar Basin, China. Journal of Geomechanics, 28(4): 573-582(in Chinese with English abstract).
      Zhou, H. W., Xie, H. P., Zuo, J. P., et al., 2010. Experimental Study of the Effect of Depth on Mechanical Parameters of Rock. Chinese Science Bulletin, 55(34): 3276-3284(in Chinese with English abstract). doi: 10.1360/972010-786
      Zhou, W., Gao, Y. Q., Shan, Y. M., et al., 2008. Lithomechanical Property of Tight Sand Reservoirs in the Second Member of Shaximiao Formation in Xinchang Gas Field, West Sichuan Basin. Natural Gas Industry, 28(2): 34-37, 163(in Chinese with English abstract).
      Zhou, X. H., Xiang, H., Yu, S., et al., 2005. Reservoir Characteristics and Development Controlling Factors of JZS Neo⁃Archean Metamorphic Buried Hill Oil Pool in Bohai Sea. Petroleum Exploration and Development, 32(6): 17-20(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2005.06.004
      Zoback, M. D., 2007. . Cambridge University Press, Cambridg. https://doi.org/10.1017/cbo9780511586477
      曹振中, 卢秀莲, 莫红艳, 等, 2023. 高内摩擦角下珊瑚礁砂地基极限承载力初步分析. 岩石力学与工程学报, 42(S1): 3609-3617.
      曹正林, 郑红军, 苟迎春, 等, 2009. 三维岩石力学参数场随机模拟预测方法及应用. 现代地质, 23(6): 1126-1130. doi: 10.3969/j.issn.1000-8527.2009.06.018
      陈勉, 2004. 我国深层岩石力学研究及在石油工程中的应用. 岩石力学与工程学报, 23(14): 2455-2462. doi: 10.3321/j.issn:1000-6915.2004.14.030
      陈勉, 金衍, 张广清, 2011. 石油工程岩石力学基础. 北京: 石油工业出版社.
      程志林, 隋微波, 宁正福, 等, 2018. 数字岩芯微观结构特征及其对岩石力学性能的影响研究. 岩石力学与工程学报, 37(2): 449-460.
      杜涛, 曲希玉, 王清斌, 等, 2023. 渤中19⁃6凝析气田孔店组砂砾岩储层压实成岩裂缝垂向演化特征. 吉林大学学报(地球科学版), 53(1): 17-29.
      龚再升, 2004. 中国近海含油气盆地新构造运动与油气成藏. 地球科学, 29(5): 513-517. doi: 10.3321/j.issn:1000-2383.2004.05.002
      贾利春, 陈杨, 余晟, 2018. 基于统一强度理论的水平井井壁稳定性分析. 断块油气田, 25(5): 639-643.
      李静, 孔祥超, 宋明水, 等, 2019. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究. 岩土力学, 40(11): 4149-4156, 4164.
      李夕兵, 宫凤强, 2021. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望. 煤炭学报, 46(3): 846-866.
      李雄炎, 秦瑞宝, 2023. 渤海湾盆地渤中19⁃6气田潜山储层裂缝表征与产能预测方法. 地球科学, 48(2): 475-487.
      刘建华, 吴超, 陶兴华, 2020. 钻井岩石力学参数三维建模方法及其现场应用. 钻采工艺, 43(1): 13-16, 7-8.
      陆诗阔, 王迪, 李玉坤, 等, 2015. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究. 天然气地球科学, 26(10): 1844-1850.
      路保平, 鲍洪志, 2005. 岩石力学参数求取方法进展. 石油钻探技术, 33(5): 44-47.
      倪金龙, 夏斌, 2006. 断块运动与潜山油气藏的形成: 以渤海湾盆地为例. 天然气工业, 26(2): 32-35, 161-162.
      彭小东, 张辉, 汪新光, 等, 2023. 低渗砂砾岩储层三元孔隙结构特征及其渗流机理与改善水驱对策. 地球科学, 48(8): 2960-2978. doi: 10.3799/dqkx.2023.032
      齐玉民, 2022. 渤海海域渤中19⁃6基岩潜山储层孔隙微观特征及其发育控制因素. 复杂油气藏, 15(2): 12-16.
      施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19⁃6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45.
      宋国民, 张艳, 李慧勇, 等, 2020. 渤中凹陷19⁃6区太古界潜山变质岩岩石类型及鉴别特征. 世界地质, 39(2): 344-352.
      孙建孟, 韩志磊, 秦瑞宝, 等, 2015. 致密气储层可压裂性测井评价方法. 石油学报, 36(1): 74-80.
      王德英, 刘晓健, 邓辉, 等, 2022. 渤海湾盆地渤中19⁃6区中-新生代构造转换特征及其对太古宇潜山大规模储层形成的控制作用. 石油与天然气地质, 43(6): 1334-1346.
      王峻峰, 杨苏, 李素华, 等, 2023. 川西南玄武岩储层微观孔隙结构及岩石力学特征. 非常规油气, 10(4): 126-131, 138.
      吴智平, 侯旭波, 李伟, 2007. 华北东部地区中生代盆地格局及演化过程探讨. 大地构造与成矿学, 31(4): 385-399.
      徐长贵, 杜晓峰, 刘晓健, 等, 2020. 渤海海域太古界深埋变质岩潜山优质储集层形成机制与油气勘探意义. 石油与天然气地质, 41(2): 235-247, 294.
      薛永安, 韦阿娟, 彭靖淞, 等, 2016. 渤海湾盆地渤海海域大中型油田成藏模式和规律. 中国海上油气, 28(3): 10-19.
      叶涛, 牛成民, 王清斌, 等, 2021. 渤海湾盆地大型基岩潜山储层特征及其控制因素: 以渤中19⁃6凝析气田为例. 地质学报, 95(6): 1889-1902.
      尹帅, 丁文龙, 林利飞, 等, 2023. 鄂尔多斯盆地西部志丹-吴起地区延长组裂缝特征及其控藏作用. 地球科学, 48(7): 2614-2629. doi: 10.3799/dqkx.2022.217
      尹帅, 孙晓光, 邬忠虎, 等, 2022. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用. 中南大学学报(自然科学版), 53(9): 3724-3737.
      赵进雍, 冀冬生, 吴见, 等, 2022. 准噶尔盆地四棵树凹陷侏罗系-白垩系储层岩石力学参数研究. 地质力学学报, 28(4): 573-582.
      周宏伟, 谢和平, 左建平, 等, 2010. 赋存深度对岩石力学参数影响的实验研究. 科学通报, 55(34): 3276-3284.
      周文, 高雅琴, 单钰铭, 等, 2008. 川西新场气田沙二段致密砂岩储层岩石力学性质. 天然气工业, 28(2): 34-37, 163.
      周心怀, 项华, 于水, 等, 2005. 渤海锦州南变质岩潜山油藏储集层特征与发育控制因素. 石油勘探与开发, 32(6): 17-20.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(4)

      Article views (207) PDF downloads(30) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return