| Citation: | Zhao Guangshuai, Pu Zhenggong, Huang Qibo, Zhu Yinian, Wu Huaying, 2024. A Review of Influence of Warming and Precipitation Changes on Soil CO2 Release. Earth Science, 49(12): 4608-4621. doi: 10.3799/dqkx.2023.197 |
|
Bond-Lamberty, B., Thomson, A., 2010. A Global Database of Soil Respiration Data. Biogeosciences, 7(6): 1915-1926. https://doi.org/10.5194/bg-7-1915-2010
|
|
Bond-Lamberty, B., Bailey, V. L., Chen, M., et al., 2018. Globally Rising Soil Heterotrophic Respiration over Recent Decades. Nature, 56080-83. https://doi.org/10.1038/s41586-018-0358-x
|
|
Blum, J. D., Gazis, C. A., Jacobson, A. D., et al., 1998. Carbonate versus Silicate Weathering in the Raikhot Watershed within the High Himalayan Crystalline Series. Geology, 26(5): 411-414. doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2
|
|
Brown, R. W., Chadwick, D. R., Zang, H. D., et al., 2021. Use of Metabolomics to Quantify Changes in Soil Microbial Function in Response to Fertiliser Nitrogen Supply and Extreme Drought. Soil Biology and Biochemistry, 160: 108351. https://doi.org/10.1016/j.soilbio.2021.108351
|
|
Campeau, A., Bishop, K., Amvrosiadi, N., et al., 2019. Current Forest Carbon Fixation Fuels Stream CO2 Emissions. Nature Communications, 10(1): 1876. https://doi.org/10.1038/s41467-019-09922-3
|
|
Cao, J. H., Yang, H., Kang, Z. Q., 2011. Preliminary Regional Estimation of Carbon Sink Flux by Carbonate Rock Corrosion: A Case Study of the Pearl River Basin. Chinese Science Bulletin, 56(35): 3766-3773. https://doi.org/10.1007/s11434-011-4377-3
|
|
Carey, J. C., Tang, J. W., Templer, P. H., et al., 2016. Temperature Response of Soil Respiration Largely Unaltered with Experimental Warming. PNAS, 113(48): 13797-13802. https://doi.org/10.1073/pnas.1605365113
|
|
Carlyle, J. C., Than, U. B., 1988. Abiotic Controls of Soil Respiration beneath an Eighteen-Year-Old Pinus Radiata Stand in South-Eastern Australia. The Journal of Ecology, 76(3): 654. https://doi.org/10.2307/2260565
|
|
Chen, J., Elsgaard, L., van Groenigen, K. J., et al., 2020. Soil Carbon Loss with Warming: New Evidence from Carbon-Degrading Enzymes. Global Change Biology, 26(4): 1944-1952. https://doi.org/10.1111/gcb.14986
|
|
Chen, W. N., Wang, S., Wang, J. S., et al., 2023. Evidence for Widespread Thermal Optimality of Ecosystem Respiration. Nature Ecology & Evolution, 7(9): 1379-1387. https://doi.org/10.1038/s41559-023-02121-w
|
|
Dai, L., Wang, G. L., He, Y. J., 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420 (in Chinese with English abstract).
|
|
Deng, L., Liu, G. B., Shangguan, Z. P., 2014. Land-Use Conversion and Changing Soil Carbon Stocks in China's 'Grain-for-Green' Program: A Synthesis. Global Change Biology, 20(11): 3544-3556. https://doi.org/10.1111/gcb.12508
|
|
Dong, H. X., Lin, J. J., Lu, J. Y., et al., 2024. Priming Effects of Surface Soil Organic Carbon Decreased with Warming: A Global Meta-Analysis. Plant and Soil, 500(1): 233-242. https://doi.org/10.1007/s11104-022-05851-1
|
|
Diao, H. J., Chen, X. P., Zhao, X., et al., 2022. Effects of Nitrogen Addition and Precipitation Alteration on Soil Respiration and Its Components in a Saline-Alkaline Grassland. Geoderma, 406: 115541. https://doi.org/10.1016/j.geoderma.2021.115541
|
|
Du, Y., Wang, Y. P., Hui, D. F., et al., 2023. Significant Effects of Precipitation Frequency on Soil Respiration and Its Components: A Global Synthesis. Global Change Biology, 29(4): 1188-1205. https://doi.org/10.1111/gcb.16532
|
|
Gampe, D., Zscheischler, J., Reichstein, M., et al., 2021. Increasing Impact of Warm Droughts on Northern Ecosystem Productivity over Recent Decades. Nature Climate Change, 11: 772-779. https://doi.org/10.1038/s41558-021-01112-8
|
|
Gao, J. Q., Feng, J., Zhang, X. W., et al., 2016. Drying-Rewetting Cycles Alter Carbon and Nitrogen Mineralization in Litter-Amended Alpine Wetland Soil. Catena, 145: 285-290. https://doi.org/10.1016/j.catena.2016.06.026
|
|
Grant, P. R., 2017. Evolution, Climate Change, and Extreme Events. Science, 357(6350): 451-452. https://doi.org/10.1126/science.aao2067
|
|
Grosso, S. J. D., Parton, W. J., Mosier, A. R., et al., 2005. Modeling Soil CO2 Emissions from Ecosystems. Biogeochemistry, 73(1): 71-91. https://doi.org/10.1007/s10533-004-0898-z
|
|
Guo, N., Lv, S. J., Lv, G. Y., et al., 2022. Effects of Warming and Precipitation on Soil CO2 Flux and Its Stable Carbon Isotope Composition in the Temperate Desert Steppe. Sustainability, 14(6): 3351. https://doi.org/10.3390/su14063351
|
|
Haaf, D., Six, J., Doetterl, S., 2021. Global Patterns of Geo-Ecological Controls on the Response of Soil Respiration to Warming. Nature Climate Change, 11: 623-627. https://doi.org/10.1038/s41558-021-01068-9
|
|
Heckman, K. A., Possinger, A. R., Badgley, B. D., et al., 2023. Moisture-Driven Divergence in Mineral-Associated Soil Carbon Persistence. PNAS, 120(7): e2210044120. https://doi.org/10.1073/pnas.2210044120
|
|
Hoover, D. L., Knapp, A. K., Smith, M. D., 2014. Resistance and Resilience of a Grassland Ecosystem to Climate Extremes. Ecology, 95(9): 2646-2656. https://doi.org/10.1890/13-2186.1
|
|
Hursh, A., Ballantyne, A., Cooper, L., et al., 2017. The Sensitivity of Soil Respiration to Soil Temperature, Moisture, and Carbon Supply at the Global Scale. Global Change Biology, 23(5): 2090-2103. https://doi.org/10.1111/gcb.13489
|
|
Kesik, M., Blagodatsky, S., Papen, H., et al., 2006. Effect of pH, Temperature and Substrate on N2O, NO and CO2 Production by Alcaligenes Faecalis P. Journal of Applied Microbiology, 101(3): 655-667. https://doi.org/10.1111/j.1365-2672.2006.02927.x
|
|
Knapp, A. K., Beier, C., Briske, D. D., et al., 2008. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. Bioscience, 58(9): 811-821. https://doi.org/10.1641/b580908
|
|
Koltz, A. M., Gough, L., McLaren, J. R., 2022. Herbivores in Arctic Ecosystems: Effects of Climate Change and Implications for Carbon and Nutrient Cycling. Annals of the New York Academy of Sciences, 1516(1): 28-47. https://doi.org/10.1111/nyas.14863
|
|
Legesse, T. G., Qu, L. P., Dong, G., et al., 2022. Extreme Wet Precipitation and Mowing Stimulate Soil Respiration in the Eurasian Meadow Steppe. Science of the Total Environment, 851: 158130. https://doi.org/10.1016/j.scitotenv.2022.158130
|
|
Lellei-Kovács, E., Kovács-Láng, E., Botta-Dukát, Z., et al., 2011. Thresholds and Interactive Effects of Soil Moisture on the Temperature Response of Soil Respiration. European Journal of Soil Biology, 47(4): 247-255. https://doi.org/10.1016/j.ejsobi.2011.05.004
|
|
Leppälammi-Kujansuu, J., Salemaa, M., Kleja, D. B., et al., 2014. Fine Root Turnover and Litter Production of Norway Spruce in a Long-Term Temperature and Nutrient Manipulation Experiment. Plant and Soil, 374(1): 73-88. https://doi.org/10.1007/s11104-013-1853-3
|
|
Li, L., Qian, R., Wang, W., et al., 2020. The Intra- and Inter-Annual Responses of Soil Respiration to Climate Extremes in a Semiarid Grassland. Geoderma, 378: 114629. https://doi.org/10.1016/j.geoderma.2020.114629
|
|
Li, L. B., Zhang, X. Y., Cai, D. W., 2021. Vertical Distribution of Soil Carbonate Concentration and the Carbon Isotopic Composition in Typical Soil Profiles from Guizhou Karst Areas, Southwest China. Earth and Environment, 49(4): 409-415(in Chinese with English abstract).
|
|
Li, J. J., Huang, Y., Xu, F. W., et al., 2018a. Responses of Growing-Season Soil Respiration to Water and Nitrogen Addition as Affected by Grazing Intensity. Functional Ecology, 32(7): 1890-1901. https://doi.org/10.1111/1365-2435.13118
|
|
Li, J. T., Wang, J. J., Zeng, D. H., et al., 2018b. The Influence of Drought Intensity on Soil Respiration during and after Multiple Drying-Rewetting Cycles. Soil Biology and Biochemistry, 127: 82-89. https://doi.org/10.1016/j.soilbio.2018.09.018
|
|
Li, J. Q., Pei, J. M., Fang, C. M., et al., 2023. Thermal Adaptation of Microbial Respiration Persists Throughout Long-Term Soil Carbon Decomposition. Ecology Letters, 26(10): 1803-1814. https://doi.org/10.1111/ele.14296
|
|
Liu, L. L., Sayer, E. J., Deng, M. F., et al., 2023. The Grassland Carbon Cycle: Mechanisms, Responses to Global Changes, and Potential Contribution to Carbon Neutrality. Fundamental Research, 3(2): 209-218. https://doi.org/10.1016/j.fmre.2022.09.028
|
|
Liu, L. L., Wang, X., Lajeunesse, M. J., et al., 2016b. A Cross-Biome Synthesis of Soil Respiration and Its Determinants under Simulated Precipitation Changes. Global Change Biology, 22(4): 1394-1405. https://doi.org/10.1111/gcb.13156
|
|
Liu, T., Xu, Z. Z., Hou, Y. H., et al., 2016a. Effects of Warming and Changing Precipitation Rates on Soil Respiration over Two Years in a Desert Steppe of Northern China. Plant and Soil, 400(1): 15-27. https://doi.org/10.1007/s11104-015-2705-0
|
|
Liu, Y., Ji, M., Liu, J. Z., et al., 2022. How Microbes in Glacier and Permafrost Record and Influence Climate Change? Earth Science, 47(10): 3825-3826(in Chinese with English abstract).
|
|
Liu, Z., Zhao, J., 2000. Contribution of Carbonate Rock Weathering to the Atmospheric CO2 Sink. Environmental Geology, 39(9): 1053-1058. https://doi.org/10.1007/s002549900072
|
|
Liu, Z. H., MacPherson, G. L., Groves, C., et al., 2018. Large and Active CO2 Uptake by Coupled Carbonate Weathering. Earth-Science Reviews, 182: 42-49. https://doi.org/10.1016/j.earscirev.2018.05.007
|
|
Lu, H. B., Li, S. H., Ma, M. N., et al., 2021. Comparing Machine Learning-Derived Global Estimates of Soil Respiration and Its Components with those from Terrestrial Ecosystem Models. Environmental Research Letters, 16(5): 054048. https://doi.org/10.1088/1748-9326/abf526
|
|
Luo, Y. Q., Sherry, R., Zhou, X. H., et al., 2009. Terrestrial Carbon-Cycle Feedback to Climate Warming: Experimental Evidence on Plant Regulation and Impacts of Biofuel Feedstock Harvest. Global Change Biology Bioenergy, 1(1): 62-74. https://doi.org/10.1111/j.1757-1707.2008.01005.x
|
|
Ma, M. G., Tang, X. G., Han, X. J., et al., 2019. Research Progress and Prospect of Observation and Simulation of Carbon Cycle in the Karst Areas of Southwest China. Progress in Geography, 38(8): 1196-1205(in Chinese with English abstract). doi: 10.18306/dlkxjz.2019.08.008
|
|
Ma, Z. L., Zhao, W. Q., Liu, M., et al., 2018. Research Progress on the Responses of Soil Respiration Components to Climatic Warming. Chinese Journal of Applied Ecology, 29(10): 3477-3486(in Chinese with English abstract).
|
|
Martin, J. B., 2017. Carbonate Minerals in the Global Carbon Cycle. Chemical Geology, 449: 58-72. https://doi.org/10.1016/j.chemgeo.2016.11.029
|
|
Miao, Y., Han, H. Y., Du, Y., et al., 2017. Nonlinear Responses of Soil Respiration to Precipitation Changes in a Semiarid Temperate Steppe. Scientific Reports, 7: 45782. https://doi.org/10.1038/srep45782
|
|
Ngaba, M. J. Y., Uwiragiye, Y., Bol, R., et al., 2023. Global Cross-Biome Patterns of Soil Respiration Responses to Individual and Interactive Effects of Nitrogen Addition, Altered Precipitation, and Warming. Science of the Total Environment, 858: 159808. https://doi.org/10.1016/j.scitotenv.2022.159808
|
|
Niu, F. R., Chen, J., Xiong, P. F., et al., 2019. Responses of Soil Respiration to Rainfall Pulses in a Natural Grassland Community on the Semi-Arid Loess Plateau of China. Catena, 178: 199-208. https://doi.org/10.1016/j.catena.2019.03.020
|
|
Pfeiffer, M., Padarian, J., Vega, M. P., 2023. Soil Inorganic Carbon Distribution, Stocks and Environmental Thresholds along a Major Climatic Gradient. Geoderma, 433: 116449. https://doi.org/10.1016/j.geoderma.2023.116449
|
|
Qin, C. Q., Li, S. L., Waldron, S., et al., 2020. High-Frequency Monitoring Reveals How Hydrochemistry and Dissolved Carbon Respond to Rainstorms at a Karstic Critical Zone, Southwestern China. Science of the Total Environment, 714: 136833. https://doi.org/10.1016/j.scitotenv.2020.136833
|
|
Rey, A., Oyonarte, C., Morán-López, T., et al., 2017. Changes in Soil Moisture Predict Soil Carbon Losses upon Rewetting in a Perennial Semiarid Steppe in SE Spain. Geoderma, 287: 135-146. https://doi.org/10.1016/j.geoderma.2016.06.025
|
|
Schimel, J. P., 2018. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annual Review of Ecology, Evolution, and Systematics, 49: 409-432. https://doi.org/10.1146/annurev-ecolsys-110617-062614
|
|
Schmidt, M. W. I., Torn, M. S., Abiven, S., et al., 2011. Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478: 49-56. https://doi.org/10.1038/nature10386
|
|
Schwendenmann, L., Veldkamp, E., Brenes, T., et al., 2003. Spatial and Temporal Variation in Soil CO2 Efflux in an Old-Growth Neotropical Rain Forest, La Selva, Costa Rica. Biogeochemistry, 64(1): 111-128. https://doi.org/10.1023/a:1024941614919
|
|
Shen, Z. X., Li, Y. L., Fu, G., 2015. Response of Soil Respiration to Short-Term Experimental Warming and Precipitation Pulses over the Growing Season in an Alpine Meadow on the Northern Tibet. Applied Soil Ecology, 90: 35-40. https://doi.org/10.1016/j.apsoil.2015.01.015
|
|
Song, J., Wan, S. Q., Piao, S. L., et al., 2019. A Meta-Analysis of 1, 119 Manipulative Experiments on Terrestrial Carbon-Cycling Responses to Global Change. Nature Ecology & Evolution, 3(9): 1309-1320. https://doi.org/10.1038/s41559-019-0958-3
|
|
Soong, J. L., Castanha, C., Hicks Pries, C. E., et al., 2021. Five Years of Whole-Soil Warming Led to Loss of Subsoil Carbon Stocks and Increased CO2 Efflux. Science Advances, 7(21): eabd1343. https://doi.org/10.1126/sciadv.abd1343
|
|
Sotta, E. D., Meir, P., Malhi, Y., et al., 2004. Soil CO2 Efflux in a Tropical Forest in the Central Amazon. Global Change Biology, 10(5): 601-617. https://doi.org/10.1111/j.1529-8817.2003.00761.x
|
|
Sotta, E. D., Veldkamp, E., Guimarães, B. R., et al., 2006. Landscape and Climatic Controls on Spatial and Temporal Variation in Soil CO2 Efflux in an Eastern Amazonian Rainforest, Caxiuanã, Brazil. Forest Ecology and Management, 237(1-3): 57-64. https://doi.org/10.1016/j.foreco.2006.09.027
|
|
Steven, D. A., 2023. Microbial Drought Resistance may Destabilize Soil Carbon. Trends in Microbiology, 31(8): 780-787. https://doi.org/10.1016/j.tim.2023.03.002
|
|
Stockmann, U., Adams, M. A., Crawford, J. W., et al., 2013. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agriculture, Ecosystems & Environment, 164: 80-99. https://doi.org/10.1016/j.agee.2012.10.001
|
|
Su, R. L., Wu, X., Hu, J. L., et al., 2023. Warming Promotes the Decomposition of Oligotrophic Bacterial-Driven Organic Matter in Paddy Soil. Soil Biology and Biochemistry, 186: 109156. https://doi.org/10.1016/j.soilbio.2023.109156
|
|
Suchet, P. A., Probst, J. L., 1995. A Global Model for Present-Day Atmospheric/Soil CO2 Consumption by Chemical Erosion of Continental Rocks (GEM-CO2). Tellus B, 47(1-2): 273-280. https://doi.org/10.1034/j.1600-0889.47.issue1.23.x
|
|
Suchet, P. A., Probst, J. L., Ludwig, W., 2003. Worldwide Distribution of Continental Rock Lithology: Implications for the Atmospheric/Soil CO2 Uptake by Continental Weathering and Alkalinity River Transport to the Oceans. Global Biogeochemical Cycles, 17(2): 1038. https://doi.org/10.1029/2002gb001891
|
|
Suseela, V., Dukes, J. S., 2013. The Responses of Soil and Rhizosphere Respiration to Simulated Climatic Changes Vary by Season. Ecology, 94(2): 403-413. https://doi.org/10.1890/12-0150.1
|
|
Tan, X. Z., Gan, T. Y., Horton, D. E., 2018. Projected Timing of Perceivable Changes in Climate Extremes for Terrestrial and Marine Ecosystems. Global Change Biology, 24(10): 4696-4708. https://doi.org/10.1111/gcb.14329
|
|
Tiruvaimozhi, Y. V., Sankaran, M., 2019. Soil Respiration in a Tropical Montane Grassland Ecosystem is Largely Heterotroph-Driven and Increases under Simulated Warming. Agricultural and Forest Meteorology, 276: 107619. https://doi.org/10.1016/j.agrformet.2019.107619
|
|
Ullah, M. R., Carrillo, Y., Dijkstra, F. A., 2021. Drought-Induced and Seasonal Variation in Carbon Use Efficiency is Associated with Fungi: Bacteria Ratio and Enzyme Production in a Grassland Ecosystem. Soil Biology and Biochemistry, 155: 108159. https://doi.org/10.1016/j.soilbio.2021.108159
|
|
Wang, H. H., Huang, W. D., He, Y. Z., et al., 2023. Effects of Warming and Precipitation Reduction on Soil Respiration in Horqin Sandy Grassland, Northern China. Catena, 233: 107470. https://doi.org/10.1016/j.catena.2023.107470
|
|
Wang, J. S., Tian, D. S., Knapp, A. K., et al., 2021a. Precipitation Manipulation and Terrestrial Carbon Cycling: The Roles of Treatment Magnitude, Experimental Duration and Local Climate. Global Ecology and Biogeography, 30(9): 1909-1921. https://doi.org/10.1111/geb.13356
|
|
Wang, J. S., Quan, Q., Chen, W. N., et al., 2021b. Increased CO2 Emissions Surpass Reductions of Non-CO2 Emissions More under Higher Experimental Warming in an Alpine Meadow. Science of the Total Environment, 769: 144559. https://doi.org/10.1016/j.scitotenv.2020.144559
|
|
Wang, W., Chen, W. L., Wang, S. P., 2010. Forest Soil Respiration and Its Heterotrophic and Autotrophic Components: Global Patterns and Responses to Temperature and Precipitation. Soil Biology and Biochemistry, 42(8): 1236-1244. https://doi.org/10.1016/j.soilbio.2010.04.013
|
|
Wood, T. E., Detto, M., Silver, W. L., 2013. Sensitivity of Soil Respiration to Variability in Soil Moisture and Temperature in a Humid Tropical Forest. PLOS One, 8(12): e80965. https://doi.org/10.1371/journal.pone.0080965
|
|
Wu, H. J., Lee, X. H., 2011. Short-Term Effects of Rain on Soil Respiration in Two New England Forests. Plant and Soil, 338(1): 329-342. https://doi.org/10.1007/s11104-010-0548-2
|
|
Wu, X., Zhu, X. Y., Zhang, M. L., et al., 2013. Effects of Soil Temperature and Moisture on Soil Respiration in Epikarst. Ecology and Environmental Sciences, 22(12): 1904-1908 (in Chinese with English abstract).
|
|
Xie, X. J., Li, Q. H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2022.025
|
|
Yang, H., Zhou, L., Huang, L. Y., et al., 2015. A Comparative Study of Soil Carbon Transfer between Forest Soils in Subtropical Karst and Clasolite Areas and the Karst Carbon Sink Effect in Guilin, Guangxi, China. Environmental Earth Sciences, 74(2): 921-928. https://doi.org/10.1007/s12665-014-3903-4
|
|
Yang, Z. H., Luo, X. R., Shi, Y. H., et al., 2023. Controls and Variability of Soil Respiration Temperature Sensitivity across China. Science of the Total Environment, 871: 161974. https://doi.org/10.1016/j.scitotenv.2023.161974
|
|
Yu, H. Y., Liu, X. D., Ma, Q. H., et al., 2021. Climatic Warming Enhances Soil Respiration Resilience in an Arid Ecosystem. Science of the Total Environment, 756: 144005. https://doi.org/10.1016/j.scitotenv.2020.144005
|
|
Yu, Z., Ciais, P., Piao, S. L., et al., 2022. Forest Expansion Dominates China's Land Carbon Sink since 1980. Nature Communications, 13(1): 5374. https://doi.org/10.1038/s41467-022-32961-2
|
|
Zhang, C. L., Huang, F., Pu, J. B., et al., 2021. Estimation of Karst Carbon Sink Fluxes and Manual Intervention to Increase Carbon Sinks in China. Geological Survey of China, 8(4): 40-52 (in Chinese with English abstract).
|
|
Zhang, Q., Qin, W., Feng, J., et al., 2023. Whole-Soil-Profile Warming does not Change Microbial Carbon Use Efficiency in Surface and Deep Soils. PNAS, 120(32): e2302190120. https://doi.org/10.1073/pnas.2302190120
|
|
Zhang, Y., Xie, Y. Z., Ma, H. B., et al., 2021. The Responses of Soil Respiration to Changed Precipitation and Increased Temperature in Desert Grassland in Northern China. Journal of Arid Environments, 193: 104579. https://doi.org/10.1016/j.jaridenv.2021.104579
|
|
Zhao, G. S., Huang, Q. B., Zhu, Y. N., et al., 2023. Simulation of the Buffering Process of Karst Soil on Sulfuric Acid Rain and the Characteristic of δ13CDIC and the Carbon Sink Flux in Guilin City, Southwest China. Environmental Earth Sciences, 82(12): 296. https://doi.org/10.1007/s12665-023-10948-6
|
|
Zhao, M., Guo, S. L., Wang, R., 2021. Diverse Soil Respiration Responses to Extreme Precipitation Patterns in Arid and Semiarid Ecosystems. Applied Soil Ecology, 163: 103928. https://doi.org/10.1016/j.apsoil.2021.103928
|
|
Zhou, L. Y., Zhou, X. H., Zhang, B. C., et al., 2014. Different Responses of Soil Respiration and Its Components to Nitrogen Addition among Biomes: A Meta-Analysis. Global Change Biology, 20(7): 2332-2343. https://doi.org/10.1111/gcb.12490
|
|
Zhu, B., Cheng, W. X., 2011. Rhizosphere Priming Effect Increases the Temperature Sensitivity of Soil Organic Matter Decomposition. Global Change Biology, 17(6): 2172-2183. https://doi.org/10.1111/j.1365-2486.2010.02354.x
|
|
Zhu, C. C., 2021. Study on the Characteristics of Soil Respiration and Its Influencing Factors in Karst Region (Dissertation). Guizhou Normal University, Guiyang, 34-40 (in Chinese with English abstract).
|
|
戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345
|
|
李龙波, 张兴勇, 蔡大为, 2021. 贵州喀斯特地区典型土壤碳酸盐垂直分布特征及其同位素组成研究. 地球与环境, 49(4): 409-415.
|
|
刘勇勤, 计慕侃, 刘军志, 等, 2022. 青藏高原冰川冻土微生物如何记录和影响气候变化?地球科学, 47(10): 3825-3826. doi: 10.3799/dqkx.2022.826
|
|
马明国, 汤旭光, 韩旭军, 等, 2019. 西南岩溶地区碳循环观测与模拟研究进展和展望. 地理科学进展, 38(8): 1196-1205.
|
|
马志良, 赵文强, 刘美, 等, 2018. 土壤呼吸组分对气候变暖的响应研究进展. 应用生态学报, 29(10): 3477-3486.
|
|
吴夏, 朱晓燕, 张美良, 等, 2013. 岩溶表层带土壤温度和含水率对呼吸作用的影响. 生态环境学报, 22(12): 1904-1908.
|
|
张春来, 黄芬, 蒲俊兵, 等, 2021. 中国岩溶碳汇通量估算与人工干预增汇途径. 中国地质调查, 8(4): 40-52.
|
|
张攀, 谢先军, 黎清华, 等, 2022. 东寒港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135.
|
|
朱粲粲, 2021. 岩溶地区土壤呼吸特征及其影响因素研究(硕士学位论文). 贵阳: 贵州师范大学, 34-40.
|