• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Zhao Guangshuai, Pu Zhenggong, Huang Qibo, Zhu Yinian, Wu Huaying, 2024. A Review of Influence of Warming and Precipitation Changes on Soil CO2 Release. Earth Science, 49(12): 4608-4621. doi: 10.3799/dqkx.2023.197
    Citation: Zhao Guangshuai, Pu Zhenggong, Huang Qibo, Zhu Yinian, Wu Huaying, 2024. A Review of Influence of Warming and Precipitation Changes on Soil CO2 Release. Earth Science, 49(12): 4608-4621. doi: 10.3799/dqkx.2023.197

    A Review of Influence of Warming and Precipitation Changes on Soil CO2 Release

    doi: 10.3799/dqkx.2023.197
    • Received Date: 2023-06-16
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • Global warming is expanding the frequency, scope, duration, and severity of severe drought and heavy rainfall events. Extreme climate events such as high temperatures, droughts, and heavy rainfall have significantly changed the rate and intensity of soil organic carbon mineralization and inorganic carbon release. The release of soil CO2, as an important component of the carbon cycle in terrestrial ecosystems, is highly sensitive to climate change. Exploring the relationship and response mechanism between soil CO2 release and climate change can provide theoretical support for in-depth understanding of soil carbon cycling and source sink mechanisms in the context of global warming. In this paper systematically it analyzes the previous studies on the effects of warming and precipitation changes on soil respiration (Rs) and soil carbonate mineral dissolution, and analyzed the impact of warming and precipitation changes on soil CO2 release from the aspects of Rs and soil carbonate mineral dissolution. In the future, efforts should be done to strengthen research on the coupling effects of climate change and other factors such as soil properties, nutrient content and availability, and microbial biomass and activity on Rs. Constructing an Rs rate model with multivariate factor coupling under extreme climate conditions. Deeply explore the response thresholds of Rs and carbonate mineral dissolution in carbonate bedrock soil areas to extreme heavy precipitation events. Accurately quantify the carbon migration and transformation flux between Rs and carbonate mineral dissolution under extreme heavy rainfall conditions.

       

    • loading
    • Bond-Lamberty, B., Thomson, A., 2010. A Global Database of Soil Respiration Data. Biogeosciences, 7(6): 1915-1926. https://doi.org/10.5194/bg-7-1915-2010
      Bond-Lamberty, B., Bailey, V. L., Chen, M., et al., 2018. Globally Rising Soil Heterotrophic Respiration over Recent Decades. Nature, 56080-83. https://doi.org/10.1038/s41586-018-0358-x
      Blum, J. D., Gazis, C. A., Jacobson, A. D., et al., 1998. Carbonate versus Silicate Weathering in the Raikhot Watershed within the High Himalayan Crystalline Series. Geology, 26(5): 411-414. doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2
      Brown, R. W., Chadwick, D. R., Zang, H. D., et al., 2021. Use of Metabolomics to Quantify Changes in Soil Microbial Function in Response to Fertiliser Nitrogen Supply and Extreme Drought. Soil Biology and Biochemistry, 160: 108351. https://doi.org/10.1016/j.soilbio.2021.108351
      Campeau, A., Bishop, K., Amvrosiadi, N., et al., 2019. Current Forest Carbon Fixation Fuels Stream CO2 Emissions. Nature Communications, 10(1): 1876. https://doi.org/10.1038/s41467-019-09922-3
      Cao, J. H., Yang, H., Kang, Z. Q., 2011. Preliminary Regional Estimation of Carbon Sink Flux by Carbonate Rock Corrosion: A Case Study of the Pearl River Basin. Chinese Science Bulletin, 56(35): 3766-3773. https://doi.org/10.1007/s11434-011-4377-3
      Carey, J. C., Tang, J. W., Templer, P. H., et al., 2016. Temperature Response of Soil Respiration Largely Unaltered with Experimental Warming. PNAS, 113(48): 13797-13802. https://doi.org/10.1073/pnas.1605365113
      Carlyle, J. C., Than, U. B., 1988. Abiotic Controls of Soil Respiration beneath an Eighteen-Year-Old Pinus Radiata Stand in South-Eastern Australia. The Journal of Ecology, 76(3): 654. https://doi.org/10.2307/2260565
      Chen, J., Elsgaard, L., van Groenigen, K. J., et al., 2020. Soil Carbon Loss with Warming: New Evidence from Carbon-Degrading Enzymes. Global Change Biology, 26(4): 1944-1952. https://doi.org/10.1111/gcb.14986
      Chen, W. N., Wang, S., Wang, J. S., et al., 2023. Evidence for Widespread Thermal Optimality of Ecosystem Respiration. Nature Ecology & Evolution, 7(9): 1379-1387. https://doi.org/10.1038/s41559-023-02121-w
      Dai, L., Wang, G. L., He, Y. J., 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420 (in Chinese with English abstract).
      Deng, L., Liu, G. B., Shangguan, Z. P., 2014. Land-Use Conversion and Changing Soil Carbon Stocks in China's 'Grain-for-Green' Program: A Synthesis. Global Change Biology, 20(11): 3544-3556. https://doi.org/10.1111/gcb.12508
      Dong, H. X., Lin, J. J., Lu, J. Y., et al., 2024. Priming Effects of Surface Soil Organic Carbon Decreased with Warming: A Global Meta-Analysis. Plant and Soil, 500(1): 233-242. https://doi.org/10.1007/s11104-022-05851-1
      Diao, H. J., Chen, X. P., Zhao, X., et al., 2022. Effects of Nitrogen Addition and Precipitation Alteration on Soil Respiration and Its Components in a Saline-Alkaline Grassland. Geoderma, 406: 115541. https://doi.org/10.1016/j.geoderma.2021.115541
      Du, Y., Wang, Y. P., Hui, D. F., et al., 2023. Significant Effects of Precipitation Frequency on Soil Respiration and Its Components: A Global Synthesis. Global Change Biology, 29(4): 1188-1205. https://doi.org/10.1111/gcb.16532
      Gampe, D., Zscheischler, J., Reichstein, M., et al., 2021. Increasing Impact of Warm Droughts on Northern Ecosystem Productivity over Recent Decades. Nature Climate Change, 11: 772-779. https://doi.org/10.1038/s41558-021-01112-8
      Gao, J. Q., Feng, J., Zhang, X. W., et al., 2016. Drying-Rewetting Cycles Alter Carbon and Nitrogen Mineralization in Litter-Amended Alpine Wetland Soil. Catena, 145: 285-290. https://doi.org/10.1016/j.catena.2016.06.026
      Grant, P. R., 2017. Evolution, Climate Change, and Extreme Events. Science, 357(6350): 451-452. https://doi.org/10.1126/science.aao2067
      Grosso, S. J. D., Parton, W. J., Mosier, A. R., et al., 2005. Modeling Soil CO2 Emissions from Ecosystems. Biogeochemistry, 73(1): 71-91. https://doi.org/10.1007/s10533-004-0898-z
      Guo, N., Lv, S. J., Lv, G. Y., et al., 2022. Effects of Warming and Precipitation on Soil CO2 Flux and Its Stable Carbon Isotope Composition in the Temperate Desert Steppe. Sustainability, 14(6): 3351. https://doi.org/10.3390/su14063351
      Haaf, D., Six, J., Doetterl, S., 2021. Global Patterns of Geo-Ecological Controls on the Response of Soil Respiration to Warming. Nature Climate Change, 11: 623-627. https://doi.org/10.1038/s41558-021-01068-9
      Heckman, K. A., Possinger, A. R., Badgley, B. D., et al., 2023. Moisture-Driven Divergence in Mineral-Associated Soil Carbon Persistence. PNAS, 120(7): e2210044120. https://doi.org/10.1073/pnas.2210044120
      Hoover, D. L., Knapp, A. K., Smith, M. D., 2014. Resistance and Resilience of a Grassland Ecosystem to Climate Extremes. Ecology, 95(9): 2646-2656. https://doi.org/10.1890/13-2186.1
      Hursh, A., Ballantyne, A., Cooper, L., et al., 2017. The Sensitivity of Soil Respiration to Soil Temperature, Moisture, and Carbon Supply at the Global Scale. Global Change Biology, 23(5): 2090-2103. https://doi.org/10.1111/gcb.13489
      Kesik, M., Blagodatsky, S., Papen, H., et al., 2006. Effect of pH, Temperature and Substrate on N2O, NO and CO2 Production by Alcaligenes Faecalis P. Journal of Applied Microbiology, 101(3): 655-667. https://doi.org/10.1111/j.1365-2672.2006.02927.x
      Knapp, A. K., Beier, C., Briske, D. D., et al., 2008. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. Bioscience, 58(9): 811-821. https://doi.org/10.1641/b580908
      Koltz, A. M., Gough, L., McLaren, J. R., 2022. Herbivores in Arctic Ecosystems: Effects of Climate Change and Implications for Carbon and Nutrient Cycling. Annals of the New York Academy of Sciences, 1516(1): 28-47. https://doi.org/10.1111/nyas.14863
      Legesse, T. G., Qu, L. P., Dong, G., et al., 2022. Extreme Wet Precipitation and Mowing Stimulate Soil Respiration in the Eurasian Meadow Steppe. Science of the Total Environment, 851: 158130. https://doi.org/10.1016/j.scitotenv.2022.158130
      Lellei-Kovács, E., Kovács-Láng, E., Botta-Dukát, Z., et al., 2011. Thresholds and Interactive Effects of Soil Moisture on the Temperature Response of Soil Respiration. European Journal of Soil Biology, 47(4): 247-255. https://doi.org/10.1016/j.ejsobi.2011.05.004
      Leppälammi-Kujansuu, J., Salemaa, M., Kleja, D. B., et al., 2014. Fine Root Turnover and Litter Production of Norway Spruce in a Long-Term Temperature and Nutrient Manipulation Experiment. Plant and Soil, 374(1): 73-88. https://doi.org/10.1007/s11104-013-1853-3
      Li, L., Qian, R., Wang, W., et al., 2020. The Intra- and Inter-Annual Responses of Soil Respiration to Climate Extremes in a Semiarid Grassland. Geoderma, 378: 114629. https://doi.org/10.1016/j.geoderma.2020.114629
      Li, L. B., Zhang, X. Y., Cai, D. W., 2021. Vertical Distribution of Soil Carbonate Concentration and the Carbon Isotopic Composition in Typical Soil Profiles from Guizhou Karst Areas, Southwest China. Earth and Environment, 49(4): 409-415(in Chinese with English abstract).
      Li, J. J., Huang, Y., Xu, F. W., et al., 2018a. Responses of Growing-Season Soil Respiration to Water and Nitrogen Addition as Affected by Grazing Intensity. Functional Ecology, 32(7): 1890-1901. https://doi.org/10.1111/1365-2435.13118
      Li, J. T., Wang, J. J., Zeng, D. H., et al., 2018b. The Influence of Drought Intensity on Soil Respiration during and after Multiple Drying-Rewetting Cycles. Soil Biology and Biochemistry, 127: 82-89. https://doi.org/10.1016/j.soilbio.2018.09.018
      Li, J. Q., Pei, J. M., Fang, C. M., et al., 2023. Thermal Adaptation of Microbial Respiration Persists Throughout Long-Term Soil Carbon Decomposition. Ecology Letters, 26(10): 1803-1814. https://doi.org/10.1111/ele.14296
      Liu, L. L., Sayer, E. J., Deng, M. F., et al., 2023. The Grassland Carbon Cycle: Mechanisms, Responses to Global Changes, and Potential Contribution to Carbon Neutrality. Fundamental Research, 3(2): 209-218. https://doi.org/10.1016/j.fmre.2022.09.028
      Liu, L. L., Wang, X., Lajeunesse, M. J., et al., 2016b. A Cross-Biome Synthesis of Soil Respiration and Its Determinants under Simulated Precipitation Changes. Global Change Biology, 22(4): 1394-1405. https://doi.org/10.1111/gcb.13156
      Liu, T., Xu, Z. Z., Hou, Y. H., et al., 2016a. Effects of Warming and Changing Precipitation Rates on Soil Respiration over Two Years in a Desert Steppe of Northern China. Plant and Soil, 400(1): 15-27. https://doi.org/10.1007/s11104-015-2705-0
      Liu, Y., Ji, M., Liu, J. Z., et al., 2022. How Microbes in Glacier and Permafrost Record and Influence Climate Change? Earth Science, 47(10): 3825-3826(in Chinese with English abstract).
      Liu, Z., Zhao, J., 2000. Contribution of Carbonate Rock Weathering to the Atmospheric CO2 Sink. Environmental Geology, 39(9): 1053-1058. https://doi.org/10.1007/s002549900072
      Liu, Z. H., MacPherson, G. L., Groves, C., et al., 2018. Large and Active CO2 Uptake by Coupled Carbonate Weathering. Earth-Science Reviews, 182: 42-49. https://doi.org/10.1016/j.earscirev.2018.05.007
      Lu, H. B., Li, S. H., Ma, M. N., et al., 2021. Comparing Machine Learning-Derived Global Estimates of Soil Respiration and Its Components with those from Terrestrial Ecosystem Models. Environmental Research Letters, 16(5): 054048. https://doi.org/10.1088/1748-9326/abf526
      Luo, Y. Q., Sherry, R., Zhou, X. H., et al., 2009. Terrestrial Carbon-Cycle Feedback to Climate Warming: Experimental Evidence on Plant Regulation and Impacts of Biofuel Feedstock Harvest. Global Change Biology Bioenergy, 1(1): 62-74. https://doi.org/10.1111/j.1757-1707.2008.01005.x
      Ma, M. G., Tang, X. G., Han, X. J., et al., 2019. Research Progress and Prospect of Observation and Simulation of Carbon Cycle in the Karst Areas of Southwest China. Progress in Geography, 38(8): 1196-1205(in Chinese with English abstract). doi: 10.18306/dlkxjz.2019.08.008
      Ma, Z. L., Zhao, W. Q., Liu, M., et al., 2018. Research Progress on the Responses of Soil Respiration Components to Climatic Warming. Chinese Journal of Applied Ecology, 29(10): 3477-3486(in Chinese with English abstract).
      Martin, J. B., 2017. Carbonate Minerals in the Global Carbon Cycle. Chemical Geology, 449: 58-72. https://doi.org/10.1016/j.chemgeo.2016.11.029
      Miao, Y., Han, H. Y., Du, Y., et al., 2017. Nonlinear Responses of Soil Respiration to Precipitation Changes in a Semiarid Temperate Steppe. Scientific Reports, 7: 45782. https://doi.org/10.1038/srep45782
      Ngaba, M. J. Y., Uwiragiye, Y., Bol, R., et al., 2023. Global Cross-Biome Patterns of Soil Respiration Responses to Individual and Interactive Effects of Nitrogen Addition, Altered Precipitation, and Warming. Science of the Total Environment, 858: 159808. https://doi.org/10.1016/j.scitotenv.2022.159808
      Niu, F. R., Chen, J., Xiong, P. F., et al., 2019. Responses of Soil Respiration to Rainfall Pulses in a Natural Grassland Community on the Semi-Arid Loess Plateau of China. Catena, 178: 199-208. https://doi.org/10.1016/j.catena.2019.03.020
      Pfeiffer, M., Padarian, J., Vega, M. P., 2023. Soil Inorganic Carbon Distribution, Stocks and Environmental Thresholds along a Major Climatic Gradient. Geoderma, 433: 116449. https://doi.org/10.1016/j.geoderma.2023.116449
      Qin, C. Q., Li, S. L., Waldron, S., et al., 2020. High-Frequency Monitoring Reveals How Hydrochemistry and Dissolved Carbon Respond to Rainstorms at a Karstic Critical Zone, Southwestern China. Science of the Total Environment, 714: 136833. https://doi.org/10.1016/j.scitotenv.2020.136833
      Rey, A., Oyonarte, C., Morán-López, T., et al., 2017. Changes in Soil Moisture Predict Soil Carbon Losses upon Rewetting in a Perennial Semiarid Steppe in SE Spain. Geoderma, 287: 135-146. https://doi.org/10.1016/j.geoderma.2016.06.025
      Schimel, J. P., 2018. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annual Review of Ecology, Evolution, and Systematics, 49: 409-432. https://doi.org/10.1146/annurev-ecolsys-110617-062614
      Schmidt, M. W. I., Torn, M. S., Abiven, S., et al., 2011. Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478: 49-56. https://doi.org/10.1038/nature10386
      Schwendenmann, L., Veldkamp, E., Brenes, T., et al., 2003. Spatial and Temporal Variation in Soil CO2 Efflux in an Old-Growth Neotropical Rain Forest, La Selva, Costa Rica. Biogeochemistry, 64(1): 111-128. https://doi.org/10.1023/a:1024941614919
      Shen, Z. X., Li, Y. L., Fu, G., 2015. Response of Soil Respiration to Short-Term Experimental Warming and Precipitation Pulses over the Growing Season in an Alpine Meadow on the Northern Tibet. Applied Soil Ecology, 90: 35-40. https://doi.org/10.1016/j.apsoil.2015.01.015
      Song, J., Wan, S. Q., Piao, S. L., et al., 2019. A Meta-Analysis of 1, 119 Manipulative Experiments on Terrestrial Carbon-Cycling Responses to Global Change. Nature Ecology & Evolution, 3(9): 1309-1320. https://doi.org/10.1038/s41559-019-0958-3
      Soong, J. L., Castanha, C., Hicks Pries, C. E., et al., 2021. Five Years of Whole-Soil Warming Led to Loss of Subsoil Carbon Stocks and Increased CO2 Efflux. Science Advances, 7(21): eabd1343. https://doi.org/10.1126/sciadv.abd1343
      Sotta, E. D., Meir, P., Malhi, Y., et al., 2004. Soil CO2 Efflux in a Tropical Forest in the Central Amazon. Global Change Biology, 10(5): 601-617. https://doi.org/10.1111/j.1529-8817.2003.00761.x
      Sotta, E. D., Veldkamp, E., Guimarães, B. R., et al., 2006. Landscape and Climatic Controls on Spatial and Temporal Variation in Soil CO2 Efflux in an Eastern Amazonian Rainforest, Caxiuanã, Brazil. Forest Ecology and Management, 237(1-3): 57-64. https://doi.org/10.1016/j.foreco.2006.09.027
      Steven, D. A., 2023. Microbial Drought Resistance may Destabilize Soil Carbon. Trends in Microbiology, 31(8): 780-787. https://doi.org/10.1016/j.tim.2023.03.002
      Stockmann, U., Adams, M. A., Crawford, J. W., et al., 2013. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agriculture, Ecosystems & Environment, 164: 80-99. https://doi.org/10.1016/j.agee.2012.10.001
      Su, R. L., Wu, X., Hu, J. L., et al., 2023. Warming Promotes the Decomposition of Oligotrophic Bacterial-Driven Organic Matter in Paddy Soil. Soil Biology and Biochemistry, 186: 109156. https://doi.org/10.1016/j.soilbio.2023.109156
      Suchet, P. A., Probst, J. L., 1995. A Global Model for Present-Day Atmospheric/Soil CO2 Consumption by Chemical Erosion of Continental Rocks (GEM-CO2). Tellus B, 47(1-2): 273-280. https://doi.org/10.1034/j.1600-0889.47.issue1.23.x
      Suchet, P. A., Probst, J. L., Ludwig, W., 2003. Worldwide Distribution of Continental Rock Lithology: Implications for the Atmospheric/Soil CO2 Uptake by Continental Weathering and Alkalinity River Transport to the Oceans. Global Biogeochemical Cycles, 17(2): 1038. https://doi.org/10.1029/2002gb001891
      Suseela, V., Dukes, J. S., 2013. The Responses of Soil and Rhizosphere Respiration to Simulated Climatic Changes Vary by Season. Ecology, 94(2): 403-413. https://doi.org/10.1890/12-0150.1
      Tan, X. Z., Gan, T. Y., Horton, D. E., 2018. Projected Timing of Perceivable Changes in Climate Extremes for Terrestrial and Marine Ecosystems. Global Change Biology, 24(10): 4696-4708. https://doi.org/10.1111/gcb.14329
      Tiruvaimozhi, Y. V., Sankaran, M., 2019. Soil Respiration in a Tropical Montane Grassland Ecosystem is Largely Heterotroph-Driven and Increases under Simulated Warming. Agricultural and Forest Meteorology, 276: 107619. https://doi.org/10.1016/j.agrformet.2019.107619
      Ullah, M. R., Carrillo, Y., Dijkstra, F. A., 2021. Drought-Induced and Seasonal Variation in Carbon Use Efficiency is Associated with Fungi: Bacteria Ratio and Enzyme Production in a Grassland Ecosystem. Soil Biology and Biochemistry, 155: 108159. https://doi.org/10.1016/j.soilbio.2021.108159
      Wang, H. H., Huang, W. D., He, Y. Z., et al., 2023. Effects of Warming and Precipitation Reduction on Soil Respiration in Horqin Sandy Grassland, Northern China. Catena, 233: 107470. https://doi.org/10.1016/j.catena.2023.107470
      Wang, J. S., Tian, D. S., Knapp, A. K., et al., 2021a. Precipitation Manipulation and Terrestrial Carbon Cycling: The Roles of Treatment Magnitude, Experimental Duration and Local Climate. Global Ecology and Biogeography, 30(9): 1909-1921. https://doi.org/10.1111/geb.13356
      Wang, J. S., Quan, Q., Chen, W. N., et al., 2021b. Increased CO2 Emissions Surpass Reductions of Non-CO2 Emissions More under Higher Experimental Warming in an Alpine Meadow. Science of the Total Environment, 769: 144559. https://doi.org/10.1016/j.scitotenv.2020.144559
      Wang, W., Chen, W. L., Wang, S. P., 2010. Forest Soil Respiration and Its Heterotrophic and Autotrophic Components: Global Patterns and Responses to Temperature and Precipitation. Soil Biology and Biochemistry, 42(8): 1236-1244. https://doi.org/10.1016/j.soilbio.2010.04.013
      Wood, T. E., Detto, M., Silver, W. L., 2013. Sensitivity of Soil Respiration to Variability in Soil Moisture and Temperature in a Humid Tropical Forest. PLOS One, 8(12): e80965. https://doi.org/10.1371/journal.pone.0080965
      Wu, H. J., Lee, X. H., 2011. Short-Term Effects of Rain on Soil Respiration in Two New England Forests. Plant and Soil, 338(1): 329-342. https://doi.org/10.1007/s11104-010-0548-2
      Wu, X., Zhu, X. Y., Zhang, M. L., et al., 2013. Effects of Soil Temperature and Moisture on Soil Respiration in Epikarst. Ecology and Environmental Sciences, 22(12): 1904-1908 (in Chinese with English abstract).
      Xie, X. J., Li, Q. H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2022.025
      Yang, H., Zhou, L., Huang, L. Y., et al., 2015. A Comparative Study of Soil Carbon Transfer between Forest Soils in Subtropical Karst and Clasolite Areas and the Karst Carbon Sink Effect in Guilin, Guangxi, China. Environmental Earth Sciences, 74(2): 921-928. https://doi.org/10.1007/s12665-014-3903-4
      Yang, Z. H., Luo, X. R., Shi, Y. H., et al., 2023. Controls and Variability of Soil Respiration Temperature Sensitivity across China. Science of the Total Environment, 871: 161974. https://doi.org/10.1016/j.scitotenv.2023.161974
      Yu, H. Y., Liu, X. D., Ma, Q. H., et al., 2021. Climatic Warming Enhances Soil Respiration Resilience in an Arid Ecosystem. Science of the Total Environment, 756: 144005. https://doi.org/10.1016/j.scitotenv.2020.144005
      Yu, Z., Ciais, P., Piao, S. L., et al., 2022. Forest Expansion Dominates China's Land Carbon Sink since 1980. Nature Communications, 13(1): 5374. https://doi.org/10.1038/s41467-022-32961-2
      Zhang, C. L., Huang, F., Pu, J. B., et al., 2021. Estimation of Karst Carbon Sink Fluxes and Manual Intervention to Increase Carbon Sinks in China. Geological Survey of China, 8(4): 40-52 (in Chinese with English abstract).
      Zhang, Q., Qin, W., Feng, J., et al., 2023. Whole-Soil-Profile Warming does not Change Microbial Carbon Use Efficiency in Surface and Deep Soils. PNAS, 120(32): e2302190120. https://doi.org/10.1073/pnas.2302190120
      Zhang, Y., Xie, Y. Z., Ma, H. B., et al., 2021. The Responses of Soil Respiration to Changed Precipitation and Increased Temperature in Desert Grassland in Northern China. Journal of Arid Environments, 193: 104579. https://doi.org/10.1016/j.jaridenv.2021.104579
      Zhao, G. S., Huang, Q. B., Zhu, Y. N., et al., 2023. Simulation of the Buffering Process of Karst Soil on Sulfuric Acid Rain and the Characteristic of δ13CDIC and the Carbon Sink Flux in Guilin City, Southwest China. Environmental Earth Sciences, 82(12): 296. https://doi.org/10.1007/s12665-023-10948-6
      Zhao, M., Guo, S. L., Wang, R., 2021. Diverse Soil Respiration Responses to Extreme Precipitation Patterns in Arid and Semiarid Ecosystems. Applied Soil Ecology, 163: 103928. https://doi.org/10.1016/j.apsoil.2021.103928
      Zhou, L. Y., Zhou, X. H., Zhang, B. C., et al., 2014. Different Responses of Soil Respiration and Its Components to Nitrogen Addition among Biomes: A Meta-Analysis. Global Change Biology, 20(7): 2332-2343. https://doi.org/10.1111/gcb.12490
      Zhu, B., Cheng, W. X., 2011. Rhizosphere Priming Effect Increases the Temperature Sensitivity of Soil Organic Matter Decomposition. Global Change Biology, 17(6): 2172-2183. https://doi.org/10.1111/j.1365-2486.2010.02354.x
      Zhu, C. C., 2021. Study on the Characteristics of Soil Respiration and Its Influencing Factors in Karst Region (Dissertation). Guizhou Normal University, Guiyang, 34-40 (in Chinese with English abstract).
      戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345
      李龙波, 张兴勇, 蔡大为, 2021. 贵州喀斯特地区典型土壤碳酸盐垂直分布特征及其同位素组成研究. 地球与环境, 49(4): 409-415.
      刘勇勤, 计慕侃, 刘军志, 等, 2022. 青藏高原冰川冻土微生物如何记录和影响气候变化?地球科学, 47(10): 3825-3826. doi: 10.3799/dqkx.2022.826
      马明国, 汤旭光, 韩旭军, 等, 2019. 西南岩溶地区碳循环观测与模拟研究进展和展望. 地理科学进展, 38(8): 1196-1205.
      马志良, 赵文强, 刘美, 等, 2018. 土壤呼吸组分对气候变暖的响应研究进展. 应用生态学报, 29(10): 3477-3486.
      吴夏, 朱晓燕, 张美良, 等, 2013. 岩溶表层带土壤温度和含水率对呼吸作用的影响. 生态环境学报, 22(12): 1904-1908.
      张春来, 黄芬, 蒲俊兵, 等, 2021. 中国岩溶碳汇通量估算与人工干预增汇途径. 中国地质调查, 8(4): 40-52.
      张攀, 谢先军, 黎清华, 等, 2022. 东寒港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135.
      朱粲粲, 2021. 岩溶地区土壤呼吸特征及其影响因素研究(硕士学位论文). 贵阳: 贵州师范大学, 34-40.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(1)  / Tables(3)

      Article views (829) PDF downloads(70) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return