Citation: | Li Tingting, Zhu Guangyou, Zhang Yijie, Chen Zhiyong, 2025. Phosphorus Cycling and Phosphorus Speciation Application in Reconstruction of Paleo-Marine Environment. Earth Science, 50(1): 246-268. doi: 10.3799/dqkx.2023.202 |
Alcott, L. J., Mills, B. J. W., Bekker, A., et al., 2022. Earth's Great Oxidation Event Facilitated by the Rise of Sedimentary Phosphorus Recycling. Nature Geoscience, 15(3): 210-215. https://doi.org/10.1038/s41561-022-00906-5
|
Algeo, T. J., Ingall, E., 2007. Sedimentary Corg: P Ratios, Paleocean Ventilation, and Phanerozoic Atmospheric PO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 130-155. https://doi.org/10.1016/j.palaeo.2007.02.029
|
Allen, A. P., Gillooly, J. F., 2009. Towards an Integration of Ecological Stoichiometry and the Metabolic Theory of Ecology to Better Understand Nutrient Cycling. Ecology Letters, 12(5): 369-384. 10.1111/j. 1461-0248.2009. 01302. x doi: 10.1111/j.1461-0248.2009.01302.x
|
Allison, P. A., 1988. Phosphatized Soft-Bodied Squids from the Jurassic Oxford Clay. Lethaia, 21(4): 403-410. https://doi.org/10.1111/j.1502-3931.1988.tb01769.x
|
Amundson, R., Berhe, A. A., Hopmans, J. W., et al., 2015. Soil and Human Security in the 21st Century. Science, 348(6235): e1261071. https://doi.org/10.1126/science.1261071
|
Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A Whiff of Oxygen before the Great Oxidation Event? Science, 317(5846): 1903-1906. https://doi.org/10.1126/science.1140325
|
Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651
|
Anderson, L. D., Delaney, M. L., Faul, K. L., 2001. Carbon to Phosphorus Ratios in Sediments: Implications for Nutrient Cycling. Global Biogeochemical Cycles, 15(1): 65-79. https://doi.org/10.1029/2000GB001270
|
Arthur, M. A., Dean, W. E., Pratt, L. M., 1988. Geochemical and Climatic Effects of Increased Marine Organic Carbon Burial at the Cenomanian/Turonian Boundary. Nature, 335: 714-717. https://doi.org/10.1038/335714a0
|
Barclay, R. S., McElwain, J. C., Sageman, B. B., 2010. Carbon Sequestration Activated by a Volcanic CO2 Pulse during Ocean Anoxic Event 2. Nature Geoscience, 3: 205-208. https://doi.org/10.1038/ngeo757
|
Barley, M. E., Bekker, A., Krapež, B., 2005. Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 238(1-2): 156-171. https://doi.org/10.1016/j.epsl.2005.06.062
|
Bartley, J. K., Kah, L. C., 2004. Marine Carbon Reservoir, Corg-Ccarb Coupling, and the Evolution of the Proterozoic Carbon Cycle. Geology, 32(2): 129-132. https://doi.org/10.1130/g19939.1
|
Baturin, G. N., 2007. Issue of the Relationship between Primary Productivity of Organic Carbon in Ocean and Phosphate Accumulation (Holocene-Late Jurassic). Lithology and Mineral Resources, 42(4): 318-348. https://doi.org/10.1134/S0024490207040025
|
Bekker, A., Holland, H. D., Wang, P. L., et al., 2004. Dating the Rise of Atmospheric Oxygen. Nature, 427: 117-120. https://doi.org/10.1038/nature02260
|
Bergman, N. M., Lenton, T. M., Watson, A. J., 2004. COPSE: A New Model of Biogeochemical Cycling over Phanerozoic Time. American Journal of Science, 304(5): 397-437. https://doi.org/10.2475/ajs.304.5.397
|
Berner, R. A., Beerling, D. J., Dudley, R., et al., 2003. Phanerozoic Atmospheric Oxygen. Annual Review of Earth and Planetary Sciences, 31: 105-134. https://doi.org/10.1146/annurev.earth.31.100901.141329
|
Berner, R. A., Canfield, D. E., 1989. A New Model for Atmospheric Oxygen over Phanerozoic Time. American Journal of Science, 289(4): 333-361. https://doi.org/10.2475/ajs.289.4.333
|
Bjerrum, C. J., Bendtsen, J., Legarth, J. J. F., 2006. Modeling Organic Carbon Burial during Sea Level Rise with Reference to the Cretaceous. Geochemistry, Geophysics, Geosystems, 7(5): 1-24. https://doi.org/10.1029/2005gc001032
|
Bjerrum, C. J., Canfield, D. E., 2002. Ocean Productivity before about 1.9 Gyr Ago Limited by Phosphorus Adsorption onto Iron Oxides. Nature, 417(6885): 159-162. https://doi.org/10.1038/417159a
|
Bosak, T., Knoll, A. H., Petroff, A., 2013. The Meanings of Stromatolites. Annual Review of Earth and Planetary Sciences, 41(1): 21-44. https://doi.org/10.1146/annurev-earth-042711-105327
|
Bowyer, F. T., Krause, A. J., Song, Y. F., et al., 2023. Biological Diversification Linked to Environmental Stabilization Following the Sturtian Snowball Glaciation. Science Advances, 9(34): eadf9999. https://doi.org/10.1126/sciadv.adf9999
|
Bowyer, F. T., Shore, A. J., Wood, R. A., et al., 2020. Regional Nutrient Decrease Drove Redox Stabilisation and Metazoan Diversification in the Late Ediacaran Nama Group, Namibia. Scientific Reports, 10: 1-11. https://doi.org/10.1038/s41598-020-59335-2
|
Boyle, R. A., Dahl, T. W., Dale, A. W., et al., 2014. Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation. Nature Geoscience, 7: 671-676. https://doi.org/10.1038/ngeo2213
|
Böning, P., Brumsack, H. J., Böttcher, M. E., et al., 2004. Geochemistry of Peruvian Near-Surface Sediments. Geochimica et Cosmochimica Acta, 68(21): 4429-4451. https://doi.org/10.1016/j.gca.2004.04.027
|
Brasier, M. D., Lindsay, J. F., 1998. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26(6): 555-558. https://doi.org/10.1130/0091-7613(1998)026<0555: abyoes>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0555:abyoes>2.3.co;2
|
Buick, R., Des Marais, D. J., Knoll, A. H., 1995. Stable Isotopic Compositions of Carbonates from the Mesoproterozoic Bangemall Group, Northwestern Australia. Chemical Geology, 123(1-4): 153-171. https://doi.org/10.1016/0009-2541(95)00049-r
|
Butterfield, N. J., 2003. Exceptional Fossil Preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43(1): 166-177. https://doi.org/10.1093/icb/43.1.166
|
Calvert, S. E., Pedersen, T. F., Karlin, R. E., 2001. Geochemical and Isotopic Evidence for Post-Glacial Palaeoceanographic Changes in Saanich Inlet, British Columbia. Marine Geology, 174(1-4): 287-305. https://doi.org/10.1016/S0025-3227(00)00156-0
|
Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396(6710): 450-453. https://doi.org/10.1038/24839
|
Canfield, D. E., Bjerrum, C. J., Zhang, S. C., et al., 2020. The Modern Phosphorus Cycle Informs Interpretations of Mesoproterozoic Era Phosphorus Dynamics. Earth-Science Reviews, 208: 103267. https://doi.org/10.1016/j.earscirev.2020.103267
|
Canfield, D. E., Raiswell, R., Bottrell, S. H., 1992. The Reactivity of Sedimentary Iron Minerals toward Sulfide. American Journal of Science, 292(9): 659-683. https://doi.org/10.2475/ajs.292.9.659
|
Canfield, D. E., Zhang, S. C., Wang, H. J., et al., 2018. A Mesoproterozoic Iron Formation. Proceedings of the National Academy of Sciences of the United States of America, 115(17): E3895-E3904. https://doi.org/10.1073/pnas.1720529115
|
Carstensen, J., Andersen, J. H., Gustafsson, B. G., et al., 2014. Deoxygenation of the Baltic Sea during the Last Century. Proceedings of the National Academy of Sciences of the United States of America, 111(15): 5628-5633. https://doi.org/10.1073/pnas.1323156111
|
Chen, M. E., Li, J. Y., Chen, Q. Y., 1999. The Late Sinian Microbiolite and Its Phosphorus Enrichment in Central Guizhou Province. Acta Petrologica Sinica, 15(3): 446-451 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199903012.htm
|
Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale-Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1
|
Colman, A. S., Mackenzie, F. T., Holland, H. D., et al., 1997. Redox Stabilization of the Atmosphere and Oceans and Marine Productivity. Science, 275(5298): 406-408. https://doi.org/10.1126/science.275.5298.406
|
Condie, K. C., Des Marais, D. J., Abbott, D., 2001. Precambrian Superplumes and Supercontinents: A Record in Black Shales, Carbon Isotopes, and Paleoclimates? Precambrian Research, 106(3-4): 239-260. https://doi.org/10.1016/S0301-9268(00)00097-8
|
Cook, P. J., 1992. Phosphogenesis around the Proterozoic-Phanerozoic Transition. Journal of the Geological Society, 149(4): 615-620. https://doi.org/10.1144/gsjgs.149.4.0615
|
Cook, P. J., Shergold, J. H., 1984. Phosphorus, Phosphorites and Skeletal Evolution at the Precambrian-Cambrian Boundary. Nature, 308: 231-236. https://doi.org/10.1038/308231a0
|
Cordell, D., Drangert, J. O., White, S., 2009. The Story of Phosphorus: Global Food Security and Food for Thought. Global Environmental Change, 19(2): 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
|
Cox, G. M., Lyons, T. W., Mitchell, R. N., et al., 2018. Linking the Rise of Atmospheric Oxygen to Growth in the Continental Phosphorus Inventory. Earth and Planetary Science Letters, 489: 28-36. https://doi.org/10.1016/j.epsl.2018.02.016
|
Creveling, J. R., Johnston, D. T., Poulton, S. W., et al., 2014. Phosphorus Sources for Phosphatic Cambrian Carbonates. Geological Society of America Bulletin, 126(1-2): 145-163. https://doi.org/10.1130/b30819.1
|
Dale, A. W., Boyle, R. A., Lenton, T. M., et al., 2016. A Model for Microbial Phosphorus Cycling in Bioturbated Marine Sediments: Significance for Phosphorus Burial in the Early Paleozoic. Geochimica et Cosmochimica Acta, 189: 251-268. https://doi.org/10.1016/j.gca.2016.05.046
|
Derry, L. A., 2015. Causes and Consequences of Mid-Proterozoic Anoxia. Geophysical Research Letters, 42(20): 8538-8546. https://doi.org/10.1002/2015gl065333
|
Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. https://doi.org/10.1016/0016-7037(92)90064-P
|
Des Marais, D. J., Strauss, H., Summons, R. E., et al., 1992. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature, 359(6396): 605-609. https://doi.org/10.1038/359605a0
|
Diaz, J., Ingall, E., Benitez-Nelson, C., et al., 2008. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration. Science, 320(5876): 652-655. https://doi.org/10.1126/science.1151751
|
Dijkstra, N., Kraal, P., Séguret, M. J. M., et al., 2018. Phosphorus Dynamics in and below the Redoxcline in the Black Sea and Implications for Phosphorus Burial. Geochimica et Cosmochimica Acta, 222: 685-703. https://doi.org/10.1016/j.gca.2017.11.016
|
Dijkstra, N., Slomp, C. P., Behrends, T., 2016. Vivianite is a Key Sink for Phosphorus in Sediments of the Landsort Deep, an Intermittently Anoxic Deep Basin in the Baltic Sea. Chemical Geology, 438: 58-72. https://doi.org/10.1016/j.chemgeo.2016.05.025
|
Drever, J. I., 1994. The Effect of Land Plants on Weathering Rates of Silicate Minerals. Geochimica et Cosmochimica Acta, 58(10): 2325-2332. https://doi.org/10.1016/0016-7037(94)90013-2
|
Egger, M., Jilbert, T., Behrends, T., et al., 2015. Vivianite is a Major Sink for Phosphorus in Methanogenic Coastal Surface Sediments. Geochimica et Cosmochimica Acta, 169: 217-235. https://doi.org/10.1016/j.gca.2015.09.012
|
Eijsink, L. M., Krom, M. D., Herut, B., 2000. Speciation and Burial Flux of Phosphorus in the Surface Sediments of the Eastern Mediterranean. American Journal of Science, 300(6): 483-503. https://doi.org/10.2475/ajs.300.6.483
|
Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al., 2007. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecology Letters, 10(12): 1135-1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x
|
Elser, J. J., Dobberfuhl, D. R., MacKay, N. A., et al., 1996. Organism Size, Life History, and N: P Stoichiometry: Toward a Unified View of Cellular and Ecosystem Processes. BioScience, 46(9): 674-684. https://doi.org/10.2307/1312897
|
Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375
|
Fan, H. F., Wen, H. J., Zhu, X. K., 2016. Marine Redox Conditions in the Early Cambrian Ocean: Insights from the Lower Cambrian Phosphorite Deposits, South China. Journal of Earth Science, 27(2): 282-296. https://doi.org/10.1007/s12583-016-0687-3
|
Feely, R. A., Trefry, J. H., Lebon, G. T., et al., 1998. The Relationship between P/Fe and V/Fe Ratios in Hydrothermal Precipitates and Dissolved Phosphate in Seawater. Geophysical Research Letters, 25(13): 2253-2256. https://doi.org/10.1029/98gl01546
|
Fennel, K., Follows, M., Falkowski, P. G., 2005. The Co-Evolution of the Nitrogen, Carbon and Oxygen Cycles in the Proterozoic Ocean. American Journal of Science, 305(6-8): 526-545. https://doi.org/10.2475/ajs.305.6-8.526
|
Filippelli, G. M., 2011. Phosphate Rock Formation and Marine Phosphorus Geochemistry: The Deep Time Perspective. Chemosphere, 84(6): 759-766. https://doi.org/10.1016/j.chemosphere.2011.02.019
|
Filippelli, G. M., Delaney, M. L., 1992. Similar Phosphorus Fluxes in Ancient Phosphorite Deposits and a Modern Phosphogenic Environment. Geology, 20(8): 709-712. https://doi.org/10.1130/0091-7613(1992)020<0709: spfiap>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0709:spfiap>2.3.co;2
|
Flament, N., Coltice, N., Rey, P. F., 2008. A Case for Late-Archaean Continental Emergence from Thermal Evolution Models and Hypsometry. Earth and Planetary Science Letters, 275(3-4): 326-336. https://doi.org/10.1016/j.epsl.2008.08.029
|
Flament, N., Coltice, N., Rey, P. F., 2013. The Evolution of the 87Sr/86Sr of Marine Carbonates does not Constrain Continental Growth. Precambrian Research, 229: 177-188. https://doi.org/10.1016/j.precamres.2011.10.009
|
Föllmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth-Science Reviews, 40(1-2): 55-124. https://doi.org/10.1016/0012-8252(95)00049-6
|
Fournier, G. P., Moore, K. R., Rangel, L. T., et al., 2021. The Archean Origin of Oxygenic Photosynthesis and Extant Cyanobacterial Lineages. Proceedings of the Royal Society B: Biological Sciences, 288(1959): 1-10. https://doi.org/10.1098/rspb.2021.0675
|
Froelich, P. N., 1988. Kinetic Control of Dissolved Phosphate in Natural Rivers and Estuaries: A Primer on the Phosphate Buffer Mechanism. Limnology and Oceanography, 33: 649-668. https://doi.org/10.4319/lo.1988.33.4_part_2.0649
|
Froelich, P. N., Bender, M. L., Luedtke, N. A., et al., 1982. The Marine Phosphorus Cycle. American Journal of Science, 282(4): 474-511. https://doi.org/10.2475/ajs.282.4.474
|
Ge, Y. Z., Algeo, T. J., Wen, H. G., et al., 2023. Dynamics of Tethyan Marine De-Oxygenation and Relationship to S-N-P Cycles during the Permian-Triassic Boundary Crisis. Earth-Science Reviews, 246: 104576. https://doi.org/10.1016/j.earscirev.2023.104576
|
Gilleaudeau, G. J., Romaniello, S. J., Luo, G. M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid-Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012
|
Glenn, C. R., Föllmi, K. B., Riggs, S. R., et al., 1994. Phosphorus and Phosphorites: Sedimentology and Environments of Formation. Eclogae Geologicae Helvetiae, 87: 747-788. https://doi.org/10.1111/j.1365-3091.1994.tb01397.x
|
Goddéris, Y., Joachimski, M. M., 2004. Global Change in the Late Devonian: Modelling the Frasnian-Famennian Short-Term Carbon Isotope Excursions. Palaeogeography, Palaeoclimatology, Palaeoecology, 202(3-4): 309-329. https://doi.org/10.1016/S0031-0182(03)00641-2
|
Guilbaud, R., Poulton, S. W., Thompson, J., et al., 2020. Phosphorus-Limited Conditions in the Early Neoproterozoic Ocean Maintained Low Levels of Atmospheric Oxygen. Nature Geoscience, 13: 296-301. https://doi.org/10.1038/s41561-020-0548-7
|
Halverson, G. P., Hoffman, P. F., Schrag, D. P., et al., 2005. Toward a Neoproterozoic Composite Carbon-Isotope Record. Geological Society of America Bulletin, 117(9): 1181-1207. https://doi.org/10.1130/b25630.1
|
Handoh, I. C., Lenton, T. M., 2003. Periodic Mid-Cretaceous Oceanic Anoxic Events Linked by Oscillations of the Phosphorus and Oxygen Biogeochemical Cycles. Global Biogeochemical Cycles, 17(4): 1-11. https://doi.org/10.1029/2003gb002039
|
Hao, J. H., Knoll, A. H., Huang, F., et al., 2020. Cycling Phosphorus on the Archean Earth: Part Ⅰ. Continental Weathering and Riverine Transport of Phosphorus. Geochimica et Cosmochimica Acta, 273: 70-84. https://doi.org/10.1016/j.gca.2020.01.027
|
Hardisty, D. S., Lu, Z. L., Bekker, A., et al., 2017. Perspectives on Proterozoic Surface Ocean Redox from Iodine Contents in Ancient and Recent Carbonate. Earth and Planetary Science Letters, 463: 159-170. https://doi.org/10.1016/j.epsl.2017.01.032
|
Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., et al., 2019. Impact of Natural Re-Oxygenation on the Sediment Dynamics of Manganese, Iron and Phosphorus in a Euxinic Baltic Sea Basin. Geochimica et Cosmochimica Acta, 246: 174-196. https://doi.org/10.1016/j.gca.2018.11.033
|
Holland, H. D., 2005. Sedimentary Mineral Deposits and the Evolution of Earth's near-Surface Environments. Economic Geology, 100(8): 1489-1509. https://doi.org/10.2113/gsecongeo.100.8.1489
|
Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838
|
Hodgskiss, M. S. W., Crockford, P. W., Peng, Y., et al., 2019. A Productivity Collapse to End Earth's Great Oxidation. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17207-17212. https://doi.org/10.1073/pnas.1900325116
|
Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129-155. https://doi.org/10.1046/j.1365-3121.2002.00408.x
|
Horton, F., 2015. Did Phosphorus Derived from the Weathering of Large Igneous Provinces Fertilize the Neoproterozoic Ocean? Geochemistry, Geophysics, Geosystems, 16(6): 1723-1738. https://doi.org/10.1002/2015gc005792
|
Hotinski, R. M., Bice, K. L., Kump, L. R., et al., 2001. Ocean Stagnation and End-Permian Anoxia. Geology, 29(1): 7-10. https://doi.org/10.1130/0091-7613(2001)029<0007: osaepa>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0007:osaepa>2.0.co;2
|
Hsu, T. W., Jiang, W. T., Wang, Y., 2014. Authigenesis of Vivianite as Influenced by Methane-Induced Sulfidization in Cold-Seep Sediments off Southwestern Taiwan. Journal of Asian Earth Sciences, 89: 88-97. https://doi.org/10.1016/j.jseaes.2014.03.027
|
Huang, J. Y., Gu, X. W., Lu, L. Y., et al., 2007. Comparison of Phosphorite Resources between Xingiang, Kazakhstan and Mongolia. Xinjiang Geology, 25(1): 75-76 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2007.01.014
|
Huang, S. Y., Xie, H. W., Hou, G. T., et al., 2023. Key Transition of Chinese Plate Configuration at the End of Early Paleozoic. Earth Science, 48(4): 1321-1329 (in Chinese with English abstract).
|
Huang, T. Z., Wang, R. M., Shen, B., 2022. The Phosphorus Cycle and Biological Pump in Earth's Middle Age: Reappraisal of the "Boring Billion". Chinese Science Bulletin, 67(15): 1614-1623 (in Chinese). doi: 10.1360/TB-2021-1168
|
Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End-Permian Marine Extinction Due to Temperature-Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561-021-00829-7
|
Ingall, E. D., Bustin, R. M., Van Cappellen, P., 1993. Influence of Water Column Anoxia on the Burial and Preservation of Carbon and Phosphorus in Marine Shales. Geochimica et Cosmochimica Acta, 57(2): 303-316. https://doi.org/10.1016/0016-7037(93)90433-W
|
Ingall, E., Jahnke, R., 1994. Evidence for Enhanced Phosphorus Regeneration from Marine Sediments Overlain by Oxygen Depleted Waters. Geochimica et Cosmochimica Acta, 58(11): 2571-2575. https://doi.org/10.1016/0016-7037(94)90033-7
|
Ingall, E., Jahnke, R., 1997. Influence of Water-Column Anoxia on the Elemental Fractionation of Carbon and Phosphorus during Sediment Diagenesis. Marine Geology, 139(1-4): 219-229. https://doi.org/10.1016/S0025-3227(96)00112-0
|
Ingall, E. D., Van Cappellen, P., 1990. Relation between Sedimentation Rate and Burial of Organic Phosphorus and Organic Carbon in Marine Sediments. Geochimica et Cosmochimica Acta, 54(2): 373-386. https://doi.org/10.1016/0016-7037(90)90326-G
|
Jones, C., Nomosatryo, S., Crowe, S. A., et al., 2015. Iron Oxides, Divalent Cations, Silica, and the Early Earth Phosphorus Crisis. Geology, 43(2): 135-138. https://doi.org/10.1130/g36044.1
|
Kamaye, T., Romanovitch, P., 2005. Origin of Phosphorite Nodules of Lebedinsky Iron Deposit in Kursk Magnetic Anomaly (KMA) of the Russian Platform. Journal of Earth Science, 16(2): 170-177, 182. http://www.cnki.com.cn/Article/CJFDTotal-ZDDY200502008.htm
|
Karl, D. M., 2000. Aquatic Ecology: Phosphorus, the Staff of Life. Nature, 406(6791): 31-33. https://doi.org/10.1038/35017683
|
Kasting, J. F., Ono, S., 2006. Palaeoclimates: The First Two Billion Years. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 917-929. https://doi.org/10.1098/rstb.2006.1839
|
Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1-4): 27-49. https://doi.org/10.1016/0301-9268(94)00070-8
|
Kendall, B., Gordon, G. W., Poulton, S. W., et al., 2011. Molybdenum Isotope Constraints on the Extent of Late Paleoproterozoic Ocean Euxinia. Earth and Planetary Science Letters, 307(3-4): 450-460. https://doi.org/10.1016/j.epsl.2011.05.019
|
Kipp, M. A., 2022. A Double-Edged Sword: The Role of Sulfate in Anoxic Marine Phosphorus Cycling through Earth History. Geophysical Research Letters, 49(20): 1-11. https://doi.org/10.1029/2022gl099817
|
Kipp, M. A., Stüeken, E. E., 2017. Biomass Recycling and Earth's Early Phosphorus Cycle. Science Advances, 3(11): eaao4795. https://doi.org/10.1126/sciadv.aao4795
|
Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., et al., 2000. Paleoproterozoic Snowball Earth: Extreme Climatic and Geochemical Global Change and Its Biological Consequences. Proceedings of the National Academy of Sciences of the United States of America, 97(4): 1400-1405. https://doi.org/10.1073/pnas.97.4.1400
|
Koehler, M. C., Buick, R., Kipp, M. A., et al., 2018. Transient Surface Ocean Oxygenation Recorded in the ∼2.66 Ga Jeerinah Formation, Australia. Proceedings of the National Academy of Sciences of the United States of America, 115(30): 7711-7716. https://doi.org/10.1073/pnas.1720820115
|
Konhauser, K. O., Lalonde, S. V., Amskold, L., et al., 2007. Was There Really an Archean Phosphate Crisis? Science, 315(5816): 1234. https://doi.org/10.1126/science.1136328
|
Kraal, P., Bostick, B. C., Behrends, T., et al., 2015. Characterization of Phosphorus Species in Sediments from the Arabian Sea Oxygen Minimum Zone: Combining Sequential Extractions and X-Ray Spectroscopy. Marine Chemistry, 168: 1-8. https://doi.org/10.1016/j.marchem.2014.10.009
|
Kraal, P., Dijkstra, N., Behrends, T., et al., 2017. Phosphorus Burial in Sediments of the Sulfidic Deep Black Sea: Key Roles for Adsorption by Calcium Carbonate and Apatite Authigenesis. Geochimica et Cosmochimica Acta, 204: 140-158. https://doi.org/10.1016/j.gca.2017.01.042
|
Kraal, P., Slomp, C. P., Forster, A., et al., 2010. Phosphorus Cycling from the Margin to Abyssal Depths in the Proto-Atlantic during Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1-2): 42-54. https://doi.org/10.1016/j.palaeo.2010.05.014
|
Kraal, P., Slomp, C. P., Reed, D. C., et al., 2012. Sedimentary Phosphorus and Iron Cycling in and below the Oxygen Minimum Zone of the Northern Arabian Sea. Biogeosciences, 9(7): 2603-2624. https://doi.org/10.5194/bg-9-2603-2012
|
Krom, M. D., Berner, R. A., 1981. The Diagenesis of Phosphorus in a Nearshore Marine Sediment. Geochimica et Cosmochimica Acta, 45(2): 207-216. https://doi.org/10.1016/0016-7037(81)90164-2
|
Krom, M. D., Kress, N., Brenner, S., et al., 1991. Phosphorus Limitation of Primary Productivity in the Eastern Mediterranean Sea. Limnology and Oceanography, 36(3): 424-432. https://doi.org/10.4319/lo.1991.36.3.0424
|
Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397-400. https://doi.org/10.1130/g21295.1
|
Kuypers, M. M. M., Pancost, R. D., Damsté, J. S. S., 1999. A Large and Abrupt Fall in Atmospheric CO2 Concentration during Cretaceous Times. Nature, 399: 342-345. https://doi.org/10.1038/20659
|
Laakso, T. A., Schrag, D. P., 2018. Limitations on Limitation. Global Biogeochemical Cycles, 32: 486-496. https://doi.org/ 10.1002/2017GB005832
|
Lamboy, M., 1993. Phosphatization of Calcium Carbonate in Phosphorites: Microstructure and Importance. Sedimentology, 40(1): 53-62. https://doi.org/10.1111/j.1365-3091.1993.tb01090.x
|
Lenton, T. M., Watson, A. J., 2000. Redfield Revisited: 2. What Regulates the Oxygen Content of the Atmosphere? Global Biogeochemical Cycles, 14: 249-268. https://doi.org/10.1029/1999GB900076
|
Li, K. Y., She, Z. B., 2017. Discovery and Possible Genesis of Micron-Sized Euhedral Albites in the Ediacaran Doushantuo Phosphorites, South China. Earth Science Frontiers, 24(1): 308-320 (in Chinese with English abstract).
|
Li, Y. F., Li, F., 2022. How did Reefs Evolve during the Precambrian-Cambrian Transition? Earth Science, 47(10): 3853-3855 (in Chinese with English abstract).
|
Li, Z. H., Chen, Z. Q., Zhang, F. F., et al., 2020. Global Carbon Cycle Perturbations Triggered by Volatile Volcanism and Ecosystem Responses during the Carnian Pluvial Episode (Late Triassic). Earth-Science Reviews, 211: 103404. https://doi.org/10.1016/j.earscirev.2020.103404
|
Lomnitz, U., Sommer, S., Dale, A. W., et al., 2016. Benthic Phosphorus Cycling in the Peruvian Oxygen Minimum Zone. Biogeosciences, 13(5): 1367-1386. https://doi.org/10.5194/bg-13-1367-2016
|
Longman, J., Mills, B. J. W., Manners, H. R., et al., 2021. Late Ordovician Climate Change and Extinctions Driven by Elevated Volcanic Nutrient Supply. Nature Geoscience, 14(12): 924-929. https://doi.org/10.1038/s41561-021-00855-5
|
Love, G. D., Grosjean, E., Stalvies, C., et al., 2009. Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718-721. https://doi.org/10.1038/nature07673
|
Lovley, D. R., Phillips, E. J., 1988. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Applied and Environmental Microbiology, 54(6): 1472-1480. https://doi.org/10.1128/aem.54.6.1472-1480.1988
|
Lucotte, M., Mucci, A., Hillaire-Marcel, C., et al., 1994. Early Diagenetic Processes in Deep Labrador Sea Sediments: Reactive and Nonreactive Iron and Phosphorus. Canadian Journal of Earth Sciences, 31(1): 14-27. https://doi.org/10.1139/e94-003
|
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068
|
Macdonald, F. A., Schmitz, M. D., Crowley, J. L., et al., 2010. Calibrating the Cryogenian. Science, 327(5970): 1241-1243. https://doi.org/10.1126/science.1183325
|
Mahowald, N., Jickells, T. D., Baker, A. R., et al., 2008. Global Distribution of Atmospheric Phosphorus Sources, Concentrations and Deposition Rates, and Anthropogenic Impacts. Global Biogeochemical Cycles, 22(4): 1-19. https://doi.org/10.1029/2008gb003240
|
Mather, R. L., Reynolds, S. E., Wolff, G. A., et al., 2008. Phosphorus Cycling in the North and South Atlantic Ocean Subtropical Gyres. Nature Geoscience, 1: 439-443. https://doi.org/10.1038/ngeo232
|
März, C., Poulton, S. W., Beckmann, B., et al., 2008. Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, Non-Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 72(15): 3703-3717. https://doi.org/10.1016/j.gca.2008.04.025
|
Melezhik, V. A., Pokrovsky, B. G., Fallick, A. E., et al., 2009. Constraints on 87Sr/86Sr of Late Ediacaran Seawater: Insight from Siberian High-Sr Limestones. Journal of the Geological Society, 166(1): 183-191. https://doi.org/10.1144/0016-76492007-171
|
Meybeck, M., 1982. Carbon, Nitrogen, and Phosphorus Transport by World Rivers. American Journal of Science, 282(4): 401-450. https://doi.org/10.2475/ajs.282.4.401
|
Meyer, K. M., Kump, L. R., Ridgwell, A., 2008. Biogeochemical Controls on Photic-Zone Euxinia during the End-Permian Mass Extinction. Geology, 36(9): 747-750. https://doi.org/10.1130/G24618A.1
|
Mills, B. J. W., Donnadieu, Y., Goddéris, Y., 2021. Spatial Continuous Integration of Phanerozoic Global Biogeochemistry and Climate. Gondwana Research, 100: 73-86. https://doi.org/10.1016/j.gr.2021.02.011
|
Mort, H. P., Adatte, T., Föllmi, K. B., et al., 2007. Phosphorus and the Roles of Productivity and Nutrient Recycling during Oceanic Anoxic Event 2. Geology, 35(6): 483-486. https://doi.org/10.1130/g23475a.1
|
Mort, H. P., Slomp, C. P., Gustafsson, B. G., et al., 2010. Phosphorus Recycling and Burial in Baltic Sea Sediments with Contrasting Redox Conditions. Geochimica et Cosmochimica Acta, 74(4): 1350-1362. https://doi.org/10.1016/j.gca.2009.11.016
|
Muscente, A. D., Vinnes, O., Sinha, S., et al., 2023. What Role does Anoxia Play in Exceptional Fossil Preservation? Lessons from the Taphonomy of the Posidonia Shale (Germany). Earth-Science Reviews, 238: 104323. https://doi.org/10.1016/j.earscirev.2023.104323
|
Müller, J., Sun, Y. D., Yang, F., et al., 2022. Phosphorus Cycle and Primary Productivity Changes in the Tethys Ocean during the Permian-Triassic Transition: Starving Marine Ecosystems. Frontiers in Earth Science, 10: 832308. https://doi.org/10.3389/feart.2022.832308
|
Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
|
Okin, G. S., Baker, A. R., Tegen, I., et al., 2011. Impacts of Atmospheric Nutrient Deposition on Marine Productivity: Roles of Nitrogen, Phosphorus, and Iron. Global Biogeochemical Cycles, 25(2): 1-10. https://doi.org/10.1029/2010gb003858
|
Ostrander, C. M., Nielsen, S. G., Owens, J. D., et al., 2019. Fully Oxygenated Water Columns over Continental Shelves before the Great Oxidation Event. Nature Geoscience, 12(4): 186-191. https://doi.org/10.1038/s41561-019-0309-7
|
Ozaki, K., Reinhard, C. T., Tajika, E., 2019. A Sluggish Mid-Proterozoic Biosphere and Its Effect on Earth's Redox Balance. Geobiology, 17(1): 3-11. https://doi.org/10.1111/gbi.12317
|
Papadomanolaki, N. M., Lenstra, W. K., Wolthers, M., et al., 2022. Enhanced Phosphorus Recycling during Past Oceanic Anoxia Amplified by Low Rates of Apatite Authigenesis. Science Advances, 8(26): eabn2370. https://doi.org/10.1126/sciadv.abn2370
|
Papineau, D., 2010. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10(2): 165-181. https://doi.org/10.1089/ast.2009.0360
|
Papineau, D., Purohit, R., Goldberg, T., et al., 2009. High Primary Productivity and Nitrogen Cycling after the Paleoproterozoic Phosphogenic Event in the Aravalli Supergroup, India. Precambrian Research, 171(1-4): 37-56. https://doi.org/10.1016/j.precamres.2009.03.005
|
Partin, C. A., Bekker, A., Planavsky, N. J., et al., 2013. Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letters, 369-370: 284-293. https://doi.org/10.1016/j.epsl.2013.03.031
|
Percival, L. M. E., Bond, D. P. G., Rakociński, B. M., et al., 2020. Phosphorus-Cycle Disturbances during the Late Devonian Anoxic Events. Global and Planetary Change, 184: 103070. https://doi.org/10.1016/j.gloplacha.2019.103070
|
Planavsky, N. J., Asael, D., Hofmann, A., et al., 2014. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nature Geoscience, 7(4): 283-286. https://doi.org/10.1038/ngeo2122
|
Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean. Nature, 477: 448-451. https://doi.org/10.1038/nature10327
|
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485
|
Planavsky, N. J., Slack, J. F., Cannon, W. F., et al., 2018. Evidence for Episodic Oxygenation in a Weakly Redox-Buffered Deep Mid-Proterozoic Ocean. Chemical Geology, 483: 581-594. https://doi.org/10.1016/j.chemgeo.2018.03.028
|
Porter, S. M., 2004. Closing the Phosphatization Window: Testing for the Influence of Taphonomic Megabias on the Pattern of Small Shelly Fossil Decline. Palaios, 19(2): 178-183. https://doi.org/10.1669/0883-1351(2004)019<0178: ctpwtf>2.0.co;2 doi: 10.1669/0883-1351(2004)019<0178:ctpwtf>2.0.co;2
|
Poulton, S. W., 2017. Early Phosphorus Redigested. Nature Geoscience, 10(2): 75-76. https://doi.org/10.1038/ngeo2884
|
Poulton, S. W., Canfield, D. E., 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. Elements, 7(2): 107-112. https://doi.org/10.2113/gselements.7.2.107
|
Poulton, S. W., Henkel, S., März, C., et al., 2015. A Continental-Weathering Control on Orbitally Driven Redox-Nutrient Cycling during Cretaceous Oceanic Anoxic Event 2. Geology, 43(11): 963-966. https://doi.org/10.1130/G36837.1
|
Qiu, Z., Zou, C. N., Mills, B. J. W., et al., 2022. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Communications Earth & Environment, 3: 1-9. https://doi.org/10.1038/s43247-022-00412-x
|
Rasmussen, B., 1996. Early-Diagenetic REE-Phosphate Minerals (Florencite, Gorceixite, Crandallite, and Xenotime) in Marine Sandstones: A Major Sink for Oceanic Phosphorus. American Journal of Science, 296(6): 601-632. https://doi.org/10.2475/ajs.296.6.601
|
Redfield, A. C., 1958. The Biological Control of Chemical Factors in the Environment. American Scientist, 46(3): 205-221. https://doi.org/10.2307/27827150
|
Rego, E. S., Busigny, V., Lalonde, S. V., et al., 2023. Low-Phosphorus Concentrations and Important Ferric Hydroxide Scavenging in Archean Seawater. PNAS Nexus, 2(3): 1-17. https://doi.org/10.1093/pnasnexus/pgad025
|
Reinhard, C. T., Planavsky, N. J., Gill, B. C., et al., 2017. Evolution of the Global Phosphorus Cycle. Nature, 541(7637): 386-389. https://doi.org/10.1038/nature20772
|
Reinhard, C. T., Planavsky, N. J., Robbins, L. J., et al., 2013. Proterozoic Ocean Redox and Biogeochemical Stasis. Proceedings of the National Academy of Sciences of the United States of America, 110(14): 5357-5362. https://doi.org/10.1073/pnas.1208622110
|
Reinhard, C. T., Raiswell, R., Scott, C., et al., 2009. A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents. Science, 326(5953): 713-716. 10.1126/science. 1176711 doi: 10.1126/science.1176711
|
Rico, K. I., Sheldon, N. D., 2019. Nutrient and Iron Cycling in a Modern Analogue for the Redoxcline of a Proterozoic Ocean Shelf. Chemical Geology, 511: 42-50. https://doi.org/10.1016/j.chemgeo.2019.02.032
|
Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001
|
Ruttenberg, K. C., 1992. Development of a Sequential Extraction Method for Different Forms of Phosphorus in Marine Sediments. Limnology and Oceanography, 37(7): 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
|
Ruttenberg, K. C., Berner, R. A., 1993. Authigenic Apatite Formation and Burial in Sediments from Non-Upwelling, Continental Margin Environments. Geochimica et Cosmochimica Acta, 57(5): 991-1007. https://doi.org/10.1016/0016-7037(93)90035-U
|
Ruvalcaba Baroni, I., Tsandev, I., Slomp, C. P., 2014. Enhanced N2-Fixation and NH4+ Recycling during Oceanic Anoxic Event 2 in the Proto-North Atlantic. Geochemistry, Geophysics, Geosystems, 15(10): 4064-4078. https://doi.org/10.1002/2014gc005453
|
Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445
|
Schenau, S. J., De Lange, G. J., 2001. Phosphorus Regeneration vs. Burial in Sediments of the Arabian Sea. Marine Chemistry, 75(3): 201-217. https://doi.org/10.1016/S0304-4203(01)00037-8
|
Schopf, J. W., Kudryavtsev, A. B., 2010. A Renaissance in Studies of Ancient Life. Geology Today, 26(4): 140-145. https://doi.org/10.1111/j.1365-2451.2010.00760.x
|
Schobben, M., Foster, W. J., Sleveland, A. R. N., et al., 2020. A Nutrient Control on Marine Anoxia during the End-Permian Mass Extinction. Nature Geoscience, 13(9): 640-646. https://doi.org/10.1038/s41561-020-0622-1
|
She, Z. B., Strother, P., McMahon, G., et al., 2013. Terminal Proterozoic Cyanobacterial Blooms and Phosphogenesis Documented by the Doushantuo Granular Phosphorites Ⅰ: In Situ Micro-Analysis of Textures and Composition. Precambrian Research, 235: 20-35. https://doi.org/10.1016/j.precamres.2013.05.011
|
Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth-Science Reviews, 149: 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002
|
Shen, J. H., Pearson, A., Henkes, G. A., et al., 2018. Improved Efficiency of the Biological Pump as a Trigger for the Late Ordovician Glaciation. Nature Geoscience, 11(7): 510-514. https://doi.org/10.1038/s41561-018-0141-5
|
Shi, Q., Shi, X. Y., Tang, D. J., et al., 2021. Heterogeneous Oxygenation Coupled with Low Phosphorus Bio-Availability Delayed Eukaryotic Diversification in Mesoproterozoic Oceans: Evidence from the ca 1.46 Ga Hongshuizhuang Formation of North China. Precambrian Research, 354: 106050. https://doi.org/10.1016/j.precamres.2020.106050
|
Shields, G. A., Veizer, J., 2002. Precambrian Marine Carbonate Isotope Database: Version 1.1. Geochemistry, Geophysics, Geosystems, 3(6): 1-12. https://doi.org/10.1029/2001gc000266
|
Shields-Zhou, G., Och, L., 2011. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA Today, 21(3): 4-11. https://doi.org/10.1130/gsatg102a.1
|
Shimura, T., Kon, Y., Sawaki, Y., et al., 2014. In-Situ Analyses of Phosphorus Contents of Carbonate Minerals: Reconstruction of Phosphorus Contents of Seawater from the Ediacaran to Early Cambrian. Gondwana Research, 25(3): 1090-1107. https://doi.org/10.1016/j.gr.2013.08.001
|
Sisodia, M. S., 2009. Impact during the Proterozoic Era Possibly Inundated the Earth with Phosphorus. International Journal of Astrobiology, 8(3): 187-191. https://doi.org/10.1017/s1473550409004480
|
Slomp, C. P., Thomson, J., De Lange, G. J., 2004. Controls on Phosphorus Regeneration and Burial during Formation of Eastern Mediterranean Sapropels. Marine Geology, 203(1-2): 141-159. https://doi.org/10.1016/S0025-3227(03)00335-9
|
Slomp, C. P., Van der Gaast, S. J., Van Raaphorst, W., 1996. Phosphorus Binding by Poorly Crystalline Iron Oxides in North Sea Sediments. Marine Chemistry, 52(1): 55-73. https://doi.org/10.1016/0304-4203(95)00078-X
|
Song, Y. F., Bowyer, F. T., Mills, B. J. W., et al., 2023. Dynamic Redox and Nutrient Cycling Response to Climate Forcing in the Mesoproterozoic Ocean. Nature Communications, 14(1): 1-10. https://doi.org/10.1038/s41467-023-41901-7
|
Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523: 451-454. https://doi.org/10.1038/nature14589
|
Stüeken, E. E., Catling, D. C., Buick, R., 2012. Contributions to Late Archaean Sulphur Cycling by Life on Land. Nature Geoscience, 5: 722-725. https://doi.org/10.1038/ngeo1585
|
Tang, M., Chu, X., Hao, J. H., et al., 2021. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876
|
Thomas, R. D., Shearman, R. M., Stewart, G. W., 2000. Evolutionary Exploitation of Design Options by the First Animals with Hard Skeletons. Science, 288(5469): 1239-1242. https://doi.org/10.1126/science.288.5469.1239
|
Thompson, J., Poulton, S. W., Guilbaud, R., et al., 2019. Development of a Modified SEDEX Phosphorus Speciation Method for Ancient Rocks and Modern Iron-Rich Sediments. Chemical Geology, 524: 383-393. https://doi.org/10.1016/j.chemgeo.2019.07.003
|
Tsandev, I., Slomp, C. P., 2009. Modeling Phosphorus Cycling and Carbon Burial during Cretaceous Oceanic Anoxic Events. Earth and Planetary Science Letters, 286(1-2): 71-79. https://doi.org/10.1016/j.epsl.2009.06.016
|
Tyrrell, T., 1999. The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production. Nature, 400: 525-531. https://doi.org/10.1038/22941
|
Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in Some Major Units of the Earth's Crust. Geological Society of America Bulletin, 72(2): 175-192. https://doi.org/10.1130/0016-7606(1961)72[175: doteis]2.0.co;2 doi: 10.1130/0016-7606(1961)72[175:doteis]2.0.co;2
|
Van Cappellen, P., Berner, R. A., 1988. A Mathematical Model for the Early Diagenesis of Phosphorus and Fluorine in Marine Sediments: Apatite Precipitation. American Journal of Science, 288(4): 289-333. https://doi.org/10.2475/ajs.288.4.289
|
Van Cappellen, P., Ingall, E. D., 1994. Benthic Phosphorus Regeneration, Net Primary Production, and Ocean Anoxia: A Model of the Coupled Marine Biogeochemical Cycles of Carbon and Phosphorus. Paleoceanography, 9(5): 677-692. https://doi.org/10.1029/94pa01455
|
Van Cappellen, P., Ingall, E. D., 1996. Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity. Science, 271(5248): 493-496. https://doi.org/10.1126/science.271.5248.493
|
Wang, D. S., Liu, Y., Zhang, J. C., et al., 2022. Controls on Marine Primary Productivity Variation and Organic Matter Accumulation during the Late Ordovician-Early Silurian Transition. Marine and Petroleum Geology, 142: 105742. https://doi.org/10.1016/j.marpetgeo.2022.105742
|
Wang, X. M., Zhang, S. C., Wang, H. J., et al., 2017. Oxygen, Climate and the Chemical Evolution of a 1 400 Million Year Old Tropical Marine Setting. American Journal of Science, 317(8): 861-900. https://doi.org/10.2475/08.2017.01
|
Wallmann, K., 2003. Feedbacks between Oceanic Redox States and Marine Productivity: A Model Perspective Focused on Benthic Phosphorus Cycling. Global Biogeochemical Cycles, 17(3): 1-18. https://doi.org/10.1029/2002gb001968
|
Wheat, C. G., Feely, R. A., Mottl, M. J., 1996. Phosphate Removal by Oceanic Hydrothermal Processes: An Update of the Phosphorus Budget in the Oceans. Geochimica et Cosmochimica Acta, 60(19): 3593-3608. https://doi.org/10.1016/0016-7037(96)00189-5
|
Xiao, S. H., 2004. New Multicellular Algal Fossils and Acritarchs in Doushantuo Chert Nodules (Neoproterozoic; Yangtze Gorges, South China). Journal of Paleontology, 78(2): 393-401. https://doi.org/10.1666/0022-3360(2004)078<0393: nmafaa>2.0.co;2 doi: 10.1666/0022-3360(2004)078<0393:nmafaa>2.0.co;2
|
Xiao, S. H., Knoll, A. H., 1999. Fossil Preservation in the Neoproterozoic Doushantuo Phosphorite Lagerstätte, South China. Lethaia, 32(3): 219-240. https://doi.org/10.1111/j.1502-3931.1999.tb00541.x
|
Xiao, S. H., Knoll, A. H., 2000. Phosphatized Animal Embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74(5): 767-788. https://doi.org/10.1017/s002233600003300x
|
Xiao, S. H., Yuan, X. L., Knoll, A. H., 2000. Eumetazoan Fossils in Terminal Proterozoic Phosphorites? Proceedings of the National Academy of Sciences of the United States of America, 97(25): 13684-13689. https://doi.org/10.1073/pnas.250491697
|
Xiong, Y. J., Guilbaud, R., Peacock, C. L., et al., 2019. Phosphorus Cycling in Lake Cadagno, Switzerland: A Low Sulfate Euxinic Ocean Analogue. Geochimica et Cosmochimica Acta, 251: 116-135. https://doi.org/10.1016/j.gca.2019.02.011
|
Ye, Q., An, Z. H., Yu, Y., et al., 2023. Phosphatized Microfossils from the Miaohe Member of South China and Their Implications for the Terminal Ediacaran Biodiversity Decline. Precambrian Research, 388: 107001. https://doi.org/10.1016/j.precamres.2023.107001
|
Yin, H. F., Yu, J. X., Luo, G. M., et al., 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11): 3809-3822 (in Chinese with English abstract). http://www.researchgate.net/publication/330192275_Biotic_Influence_on_the_Formation_of_Icehouse_Climates_in_Geologic_History
|
Zegeye, A., Bonneville, S., Benning, L. G., et al., 2012. Green Rust Formation Controls Nutrient Availability in a Ferruginous Water Column. Geology, 40: 599-602. https://doi.org/10.1130/G32959.1
|
Zhang, F. F., Shen, S. Z., Cui, Y., et al., 2020. Two Distinct Episodes of Marine Anoxia during the Permian-Triassic Crisis Evidenced by Uranium Isotopes in Marine Dolostones. Geochimica et Cosmochimica Acta, 287: 165-179. https://doi.org/10.1016/j.gca.2020.01.032
|
Zhang, H. Q., Xiao, S. H., Liu, Y. H., et al., 2015. Armored Kinorhynch-like Scalidophoran Animals from the Early Cambrian. Scientific Reports, 5: 16521. https://doi.org/10.1038/srep16521
|
Zhang, S. C., Wang, H. J., Wang, X. M., et al., 2022. Mesoproterozoic Marine Biological Carbon Pump: Source, Degradation, and Enrichment of Organic Matter. Chinese Science Bulletin, 67(15): 1624-1643 (in Chinese). doi: 10.1360/TB-2022-0041
|
Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016. Sufficient Oxygen for Animal Respiration 1 400 Million Years ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113
|
Zhao, X. K., Shi, X. Y., Wang, X. Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890 (in Chinese with English abstract).
|
陈孟莪, 李菊英, 陈其英, 1999. 黔中晚震旦世微生物岩及其磷的富集. 岩石学报, 15(3): 446-451.
|
黄剑云, 古学伟, 卢兰英, 等, 2007. 新疆与哈萨克斯坦和蒙古国磷块岩资源对比. 新疆地质, 25(1): 75-76. doi: 10.3969/j.issn.1000-8845.2007.01.014
|
黄少英, 谢会文, 侯贵廷, 等, 2023. 中国板块构造格局在早古生代末的重大转变. 地球科学, 48(4): 1321-1329.
|
黄天正, 王瑞敏, 沈冰, 2022. "中年地球" 的磷循环与生物泵: 再谈"沉寂的十亿年". 科学通报, 67(15): 1614-1623.
|
李凯月, 佘振兵, 2017. 华南陡山沱组磷块岩中微米级自形钠长石的发现及其可能成因. 地学前缘, 24(1): 308-320.
|
李杨凡, 李飞, 2022. 前寒武‒寒武纪重大转折期生物礁是如何演化的?地球科学, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838
|
殷鸿福, 喻建新, 罗根明, 等, 2018. 地史时期生物对冰室气候形成的作用. 地球科学, 43(11): 3809-3822. doi: 10.3799/dqkx.2018.117
|
张水昌, 王华建, 王晓梅, 等, 2022. 中元古代海洋生物碳泵: 有机质来源、降解与富集. 科学通报, 67(15): 1624-1643.
|
赵相宽, 史晓颖, 王新强, 等, 2018. 寒武纪早期海洋阶段性氧化驱动早期后生动物多样化进程. 地球科学, 43(11): 3873-3890.
|