• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 6
    Jun.  2024
    Turn off MathJax
    Article Contents
    Liu Zhenghao, Liu Yang, Liu Jia, Niu Shengli, Zou Yongliao, 2024. Distribution Characteristics and Research Progress of Water-Ice on Mars. Earth Science, 49(6): 2253-2276. doi: 10.3799/dqkx.2023.205
    Citation: Liu Zhenghao, Liu Yang, Liu Jia, Niu Shengli, Zou Yongliao, 2024. Distribution Characteristics and Research Progress of Water-Ice on Mars. Earth Science, 49(6): 2253-2276. doi: 10.3799/dqkx.2023.205

    Distribution Characteristics and Research Progress of Water-Ice on Mars

    doi: 10.3799/dqkx.2023.205
    • Received Date: 2023-09-25
      Available Online: 2024-07-11
    • Publish Date: 2024-06-25
    • Mars, as a planet in the solar system similar to Earth, once had a history of active water activities. However, its current thin atmosphere and cold, arid climate make it difficult for liquid water to exist on the Martian surface. Water on modern Mars is mostly present in the form of ice at the polar regions and mid-latitude areas, forming various types of depositional landforms. With the growing number of deep space exploration missions, the water-ice environment and habitability of Mars have attracted more attention. In this article it focuses on polar ice caps, glacial landforms in mid-latitudes and sublimation landforms of shallow subsurface water-ice in mid-latitudes. It introduces and analyzes their morphological characteristics, distribution, formation mechanisms, and their coupling with the climate. The formation of mid-latitude water-ice landforms on Mars is, due to the migration of polar water-ice to the mid-latitude surface when Mars is at a high obliquity, transitioning to a cold glacial period in those regions. Conversely, this leads to an expansion of polar ice cap regions. Thus, the periodic changes in Martian obliquity have driven climate variations and the subsequent redistribution of water-ice on the Martian surface, characterized by a cyclic enrichment from polar to mid-high latitude regions. By summarizing the distribution characteristics of water-ice on Mars, our understanding of the Martian water-ice environment is improved. Also, several prospects on the future research directions are provided based on the current research status of Martian water-ice. The Martian water-ice landforms are closely linked to the habitable environment and potential forms of life on Mars. Studying water-ice on Mars can help us gain insights into Martian climate evolution history, habitability conditions, and provide support for future Mars exploration missions.

       

    • loading
    • Appéré, T., Schmitt, B., Langevin, Y., et al., 2011. Winter and Spring Evolution of Northern Seasonal Deposits on Mars from OMEGA on Mars Express. Journal of Geophysical Research: Planets, 116(E5): E05001. https://doi.org/10.1029/2010je003762
      Arfstrom, J., Hartmann, W. K., 2005. Martian Flow Features, Moraine-Like Ridges, and Gullies: Terrestrial Analogs and Interrelationships. Icarus, 174(2): 321-335. https://doi.org/10.1016/j.icarus.2004.05.026
      Arnold, N. S., Conway, S. J., Butcher, F. E. G., et al., 2019. Modeled Subglacial Water Flow Routing Supports Localized Intrusive Heating as a Possible Cause of Basal Melting of Mars' South Polar Ice Cap. Journal of Geophysical Research: Planets, 124(8): 2101-2116. https://doi.org/10.1029/2019JE006061
      Arvidson, R., Adams, D., Bonfiglio, G., et al., 2008. Mars Exploration Program 2007 Phoenix Landing Site Selection and Characteristics. Journal of Geophysical Research: Planets, 113(E3): E00A03. https://doi.org/10.1029/2007JE003021
      Baker, D. M. H., Head, J. W., Marchant, D. R., 2010. Flow Patterns of Lobate Debris Aprons and Lineated Valley Fill North of ISMEniae Fossae, Mars: Evidence for Extensive Mid-Latitude Glaciation in the Late Amazonian. Icarus, 207(1): 186-209. https://doi.org/10.1016/j.icarus.2009.11.017
      Bierson, C. J., Tulaczyk, S., Courville, S. W., et al., 2021. Strong MARSIS Radar Reflections from the Base of Martian South Polar Cap may be Due to Conductive Ice or Minerals. Geophysical Research Letters, 48(13): e2021GL093880. https://doi.org/10.1029/2021GL093880
      Brown, A. J., Calvin, W. M., Murchie, S. L., 2012. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) North Polar Springtime Recession Mapping: First 3 Mars Years of Observations. Journal of Geophysical Research: Planets, 117(E12): E00J20. https://doi.org/10.1029/2012JE004113
      Butcher, F. E. G., 2022. Water Ice at Mid-Latitudes on Mars. Oxford Research Encyclopedia of Planetary Science. Oxford University Press, Oxford. https://doi.org/10.1093/acrefore/9780190647926.013.239
      Butcher, F. E. G., Conway, S. J., Arnold, N. S., 2016. Are the Dorsa Argentea on Mars Eskers? Icarus, 275: 65-84. https://doi.org/10.1016/j.icarus.2016.03.028
      Byrne, S., 2009. The Polar Deposits of Mars. Annual Review of Earth and Planetary Sciences, 37: 535-560. https://doi.org/10.1146/annurev.earth.031208.100101
      Byrne, S., Dundas, C. M., Kennedy, M. R., et al., 2009. Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters. Science, 325(5948): 1674-1676. https://doi.org/10.1126/science.1175307
      Campbell, B. A., Putzig, N. E., Carter, L. M., et al., 2013. Roughness and Near-Surface Density of Mars from SHARAD Radar Echoes. Journal of Geophysical Research: Planets, 118(3): 436-450. https://doi.org/10.1002/jgre.20050
      Cantor, B. A., Wolff, M. J., James, P. B., et al., 1998. Regression of Martian North Polar Cap: 1990—1997 Hubble Space Telescope Observations. Icarus, 136(2): 175-191. https://doi.org/10.1006/icar.1998.6020
      Carr, M. H., 2007. The Surface of Mars. Cambridge University Press, Cambridge.
      Carr, M. H., Schaber, G. G., 1977. Martian Permafrost Features. Journal of Geophysical Research, 82(28): 4039-4054. https://doi.org/10.1029/JS082i028p04039
      Christensen, P. R., 2003. Formation of Recent Martian Gullies through Melting of Extensive Water-Rich Snow Deposits. Nature, 422: 45-48. https://doi.org/10.1038/nature01436
      Chuang, F., Crown, D., 2005. Surface Characteristics and Degradational History of Debris Aprons in the Tempe Terra/Mareotis Fossae Region of Mars. Icarus, 179(1): 24-42. https://doi.org/10.1016/j.icarus.2005.05.014
      Clark, B. R., Mullin, R. P., 1976. Martian Glaciation and the Flow of Solid CO2. Icarus, 27(2): 215-228. https://doi.org/10.1016/0019-1035(76)90005-1
      Clifford, S. M., Crisp, D., Fisher, D. A., et al., 2000. The State and Future of Mars Polar Science and Exploration. Icarus, 144(2): 210-242. https://doi.org/10.1006/icar.1999.6290
      Conway, S. J., Balme, M. R., 2014. Decameter Thick Remnant Glacial Ice Deposits on Mars. Geophysical Research Letters, 41(15): 5402-5409. https://doi.org/10.1002/2014GL060314
      Conway, S. J., Butcher, F. E. G., de Haas, T., et al., 2018. Glacial and Gully Erosion on Mars: A Terrestrial Perspective. Geomorphology, 318: 26-57. https://doi.org/10.1016/j.geomorph.2018.05.019
      Conway, S. J., de Haas, T., Harrison, T. N., 2019. Martian Gullies: A Comprehensive Review of Observations, Mechanisms and Insights from Earth Analogues. Geological Society, London, Special Publications, 467(1): 7-66. https://doi.org/10.1144/sp467.14
      Costard, F. M., Kargel, J. S., 1995. Outwash Plains and Thermokarst on Mars. Icarus, 114(1): 93-112. https://doi.org/10.1006/icar.1995.1046
      Dickson, J. L., Head, J. W., Fassett, C. I., 2012. Patterns of Accumulation and Flow of Ice in the Mid-Latitudes of Mars during the Amazonian. Icarus, 219(2): 723-732. https://doi.org/10.1016/j.icarus.2012.03.010
      Dickson, J. L., Head, J. W., Marchant, D. R., 2010. Kilometer-Thick Ice Accumulation and Glaciation in the Northern Mid-Latitudes of Mars: Evidence for Crater-Filling Events in the Late Amazonian at the Phlegra Montes. Earth and Planetary Science Letters, 294(3-4): 332-342. https://doi.org/10.1016/j.epsl.2009.08.031
      Dundas, C. M., Bramson, A. M., Ojha, L., et al., 2018. Exposed Subsurface Ice Sheets in the Martian Mid-Latitudes. Science, 359(6372): 199-201. https://doi.org/10.1126/science.aao1619
      Dundas, C. M., Byrne, S., McEwen, A. S., et al., 2014. HiRISE Observations of New Impact Craters Exposing Martian Ground Ice. Journal of Geophysical Research: Planets, 119(1): 109-127. https://doi.org/10.1002/2013JE004482
      Dundas, C. M., McEwen, A. S., Chojnacki, M., et al., 2017. Granular Flows at Recurring Slope Lineae on Mars Indicate a Limited Role for Liquid Water. Nature Geoscience, 10: 903-907. https://doi.org/10.1038/s41561-017-0012-5
      Dundas, C. M., Mellon, M. T., Conway, S. J., et al., 2021. Widespread Exposures of Extensive Clean Shallow Ice in the Midlatitudes of Mars. Journal of Geophysical Research: Planets, 126(3): e2020JE006617. https://doi.org/10.1029/2020je006617
      Fassett, C. I., Levy, J. S., Dickson, J. L., et al., 2014. An Extended Period of Episodic Northern Mid-Latitude Glaciation on Mars during the Middle to Late Amazonian: Implications for Long-Term Obliquity History. Geology, 42(9): 763-766. https://doi.org/10.1130/g35798.1
      Fastook, J. L., Head, J. W., 2014. Amazonian Mid- to High-Latitude Glaciation on Mars: Supply-Limited Ice Sources, Ice Accumulation Patterns, and Concentric Crater Fill Glacial Flow and Ice Sequestration. Planetary and Space Science, 91: 60-76. https://doi.org/10.1016/j.pss.2013.12.002
      Fastook, J. L., Head, J. W., Marchant, D. R., 2014. Formation of Lobate Debris Aprons on Mars: Assessment of Regional Ice Sheet Collapse and Debris-Cover Armoring. Icarus, 228: 54-63. https://doi.org/10.1016/j.icarus.2013.09.025
      Feldman, W. C., Prettyman, T. H., Maurice, S., et al., 2004. Global Distribution of Near-Surface Hydrogen on Mars. Journal of Geophysical Research: Planets, 109(E9): E09006. https://doi.org/10.1029/2003JE002160
      Fenton, L. K., Herkenhoff, K. E., 2000. Topography and Stratigraphy of the Northern Martian Polar Layered Deposits Using Photoclinometry, Stereogrammetry, and MOLA Altimetry. Icarus, 147(2): 433-443. https://doi.org/10.1006/icar.2000.6459
      Fisher, D., 2005. A Process to Make Massive Ice in the Martian Regolith Using Long-Term Diffusion and Thermal Cracking. Icarus, 179(2): 387-397. https://doi.org/10.1016/j.icarus.2005.07.024
      Forget, F., Haberle, R. M., Montmessin, F., et al., 2006. Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science, 311(5759): 368-371. https://doi.org/10.1126/science.1120335
      Gatto, L. W., Anderson, D. M., 1975. Alaskan Thermokarst Terrain and Possible Martian Analog. Science, 188(4185): 255-7. https://doi.org/10.1126/science.188.4185.255
      Grima, C., Mouginot, J., Kofman, W., et al., 2022. The Basal Detectability of an Ice-Covered Mars by MARSIS. Geophysical Research Letters, 49(2): e2021GL096518. https://doi.org/10.1029/2021gl096518
      Guallini, L., Rossi, A. P., Lauro, S. E., et al., 2014. "Unconformity-Bounded" Stratigraphic Units in the South Polar Layered Deposits (Promethei Lingula, Mars). In: Rocha, R., Pais, J., Kullberg, J., et al., eds. . STRATI 2013. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-04364-7_65
      Hamilton, C. W., Fagents, S. A., Wilson, L., 2010. Explosive Lava-Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups. Journal of Geophysical Research: Planets, 115(E9): E09006. https://doi.org/10.1029/2009JE003546
      Harish, Vijayan, S., Mangold, N., et al., 2020. Water-Ice Exposing Scarps within the Northern Midlatitude Craters on Mars. Geophysical Research Letters, 47(14): e2020GL089057. https://doi.org/10.1029/2020GL089057
      Hauber, E., van Gasselt, S., Chapman, M. G., et al., 2008. Geomorphic Evidence for Former Lobate Debris Aprons at Low Latitudes on Mars: Indicators of the Martian Paleoclimate. Journal of Geophysical Research: Planets, 113(E2): E02007. https://doi.org/10.1029/2007JE002897
      Hauber, E., van Gasselt, S., Ivanov, B., et al., 2005. Discovery of a Flank Caldera and Very Young Glacial Activity at Hecates Tholus, Mars. Nature, 434: 356-361. https://doi.org/10.1038/nature03423
      Head, J. W., Marchant, D. R., Agnew, M. C., et al., 2006a. Extensive Valley Glacier Deposits in the Northern Mid-Latitudes of Mars: Evidence for Late Amazonian Obliquity-Driven Climate Change. Earth and Planetary Science Letters, 241(3/4): 663-671. https://doi.org/10.1016/j.epsl.2005.11.016
      Head, J. W., Nahm, A. L., Marchant, D. R., et al., 2006b. Modification of the Dichotomy Boundary on Mars by Amazonian Mid-Latitude Regional Glaciation. Geophysical Research Letters, 33(8): L08S03. https://doi.org/10.1029/2005GL024360
      Head, J. W., Marchant, D. R., Dickson, J. L., et al., 2010. Northern Mid-Latitude Glaciation in the Late Amazonian Period of Mars: Criteria for the Recognition of Debris-Covered Glacier and Valley Glacier Landsystem Deposits. Earth and Planetary Science Letters, 294(3-4): 306-320. https://doi.org/10.1016/j.epsl.2009.06.041
      Head, J. W., Mustard, J. F., Kreslavsky, M. A., et al., 2003. Recent Ice Ages on Mars. Nature, 426: 797-802. https://doi.org/10.1038/nature02114
      Head, J. W., Pratt, S., 2001. Extensive Hesperian-Aged South Polar Ice Sheet on Mars: Evidence for Massive Melting and Retreat, and Lateral Flow and Ponding of Meltwater. Journal of Geophysical Research: Planets, 106(E6): 12275-12299. https://doi.org/10.1029/2000je001359
      Herkenhoff, K. E., Byrne, S., Russell, P. S., et al., 2007. Meter-Scale Morphology of the North Polar Region of Mars. Science, 317(5845): 1711-1715. https://doi.org/10.1126/science.1143544
      Herkenhoff, K. . E., Plaut, J. J., 2000. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars. Icarus, 144(2): 243-253. https://doi.org/10.1006/icar.1999.6287
      Hoffman, N., 2002. Active Polar Gullies on Mars and the Role of Carbon Dioxide. Astrobiology, 2(3): 313-323. https://doi.org/10.1089/153110702762027899
      Holt, J. W., Safaeinili, A., Plaut, J. J., et al., 2008. Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars. Science, 322(5905): 1235-1238. https://doi.org/10.1126/science.1164246
      Hubbard, B., Milliken, R. E., Kargel, J. S., et al., 2011. Geomorphological Characterisation and Interpretation of a Mid-Latitude Glacier-Like Form: Hellas Planitia, Mars. Icarus, 211(1): 330-346. https://doi.org/10.1016/j.icarus.2010.10.021
      Jaumann, R., Neukum, G., Behnke, T., et al., 2007. The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planetary and Space Science, 55(7-8): 928-952. https://doi.org/10.1016/j.pss.2006.12.003.
      Jing, H. M., Zhang, H., Li, H., et al., 2011. Parallel Numerical Analysis on the Rheology of the Martian Ice-Rock Mixture. Journal of Earth Science, 22(2): 176-181. https://doi.org/10.1007/s12583-011-0170-0
      Kadish, S. J., Head, J. W., 2011. Preservation of Layered Paleodeposits in High-Latitude Pedestal Craters on Mars. Icarus, 213(2): 443-450. https://doi.org/10.1016/j.icarus.2011.03.029
      Kadish, S., Head, J., Parsons, R., et al., 2008. The Ascraeus Mons Fan-Shaped Deposit: Volcano–Ice Interactions and the Climatic Implications of Cold-Based Tropical Mountain Glaciation. Icarus, 197(1): 84-109. https://doi.org/10.1016/j.icarus.2008.03.019
      Khuller, A. R., Christensen, P. R., 2021. Evidence of Exposed Dusty Water Ice within Martian Gullies. Journal of Geophysical Research: Planets, 126(2): e2020JE006539. https://doi.org/10.1029/2020je006539
      Kieffer, H. H., Chase, S. C., Martin, T. Z., et al., 1976. Martian North Pole Summer Temperatures: Dirty Water Ice. Science, 194(4271): 1341-1344. https://doi.org/10.1126/science.194.4271.1341
      Kieffer, H. H., Christensen, P. R., Titus, T. N., 2006. CO2 Jets Formed by Sublimation beneath Translucent Slab Ice in Mars' Seasonal South Polar Ice Cap. Nature, 442: 793-796. https://doi.org/10.1038/nature04945
      Kolb, E. J., Tanaka, K. L., 2001. Geologic History of the Polar Regions of Mars Based on Mars Global Surveyor Data Ⅱ. Amazonian Period. Icarus, 154(1): 22-39. https://doi.org/10.1006/icar.2001.6676
      Kostama, V. P., Kreslavsky, M. A., Head, J. W., 2006. Recent High-Latitude Icy Mantle in the Northern Plains of Mars: Characteristics and Ages of Emplacement. Geophysical Research Letters, 33(11): L11201. https://doi.org/10.1029/2006GL025946
      Krasilnikov, S. S., Kuzmin, R. O., Evdokimova, N. A., 2018. Remnant Massifs of Layered Deposits at High Northern Latitudes of Mars. Solar System Research, 52(1): 26-36. https://doi.org/10.1134/S0038094617060065
      Lalich, D. E., Hayes, A. G., Poggiali, V., 2022. Explaining Bright Radar Reflections below the South Pole of Mars without Liquid Water. Nature Astronomy, 6: 1142-1146. https://doi.org/10.1038/s41550-022-01775-z
      Langevin, Y., Poulet, F., Bibring, J. P., et al., 2005. Summer Evolution of the North Polar Cap of Mars as Observed by OMEGA/Mars Express. Science, 307(5715): 1581-1584. https://doi.org/10.1126/science.1109438
      Laskar, J., Correia, A. C. M., Gastineau, M., et al., 2004. Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars. Icarus, 170(2): 343-364. https://doi.org/10.1016/j.icarus.2004.04.005
      Lauro, S. E., Pettinelli, E., Caprarelli, G., et al., 2021. Multiple Subglacial Water Bodies below the South Pole of Mars Unveiled by New MARSIS Data. Nature Astronomy, 5: 63-70. https://doi.org/10.1038/s41550-020-1200-6
      Lefort, A., Russell, P. S., Thomas, N., et al., 2009. Observations of Periglacial Landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research: Planets, 114(E4): E04005. https://doi.org/10.1029/2008je003264
      Lefort, A., Russell, P. S., Thomas, N., 2010. Scalloped Terrains in the Peneus and Amphitrites Paterae Region of Mars as Observed by HiRISE. Icarus, 205(1): 259-268. https://doi.org/10.1016/j.icarus.2009.06.005
      Leighton, R. B., Murray, B. C., 1966. Behavior of Carbon Dioxide and Other Volatiles on Mars. Science, 153(3732): 136-144. https://doi.org/10.1126/science.153.3732.136
      Levrard, B., Forget, F., Montmessin, F., et al., 2004. Recent Ice-Rich Deposits Formed at High Latitudes on Mars by Sublimation of Unstable Equatorial Ice during Low Obliquity. Nature, 431: 1072-1075. https://doi.org/10.1038/nature03055
      Levrard, B., Forget, F., Montmessin, F., et al., 2007. Recent Formation and Evolution of Northern Martian Polar Layered Deposits as Inferred from a Global Climate Model. Journal of Geophysical Research: Planets, 112(E6): E06012. https://doi.org/10.1029/2006JE002772
      Levy, J., Head, J., Marchant, D., 2009a. Thermal Contraction Crack Polygons on Mars: Classification, Distribution, and Climate Implications from HiRISE Observations. Journal of Geophysical Research: Planets, 114(E1): E01007. https://doi.org/10.1029/2008je003273
      Levy, J. S., Head, J. W., Marchant, D. R., 2009b. Concentric Crater Fill in Utopia Planitia: History and Interaction between Glacial "Brain Terrain" and Periglacial Mantle Processes. Icarus, 202(2): 462-476. https://doi.org/10.1016/j.icarus.2009.02.018
      Levy, J., Head, J. W., Marchant, D. R., 2010. Concentric Crater Fill in the Northern Mid-Latitudes of Mars: Formation Processes and Relationships to Similar Landforms of Glacial Origin. Icarus, 209(2): 390-404. https://doi.org/10.1016/j.icarus.2010.03.036
      Levy, J. S., Fassett, C. I., Head, J. W., et al., 2014. Sequestered Glacial Ice Contribution to the Global Martian Water Budget: Geometric Constraints on the Volume of Remnant, Midlatitude Debris-Covered Glaciers. Journal of Geophysical Research: Planets, 119(10): 2188-2196. https://doi.org/10.1002/2014JE004685
      Li, C., Zheng, Y. K., Wang, X., et al., 2022. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature, 610: 308-312. https://doi.org/10.1038/s41586-022-05147-5
      Li, H., Robinson, M. S., Jurdy, D. M., 2005. Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons. Icarus, 176(2): 382-394. https://doi.org/10.1016/j.icarus.2005.02.011
      Liu, Y., Liu, Z. H., Wu, X., et al., 2021. Evolution of Water Environment on Mars. Acta Geologica Sinica, 95(9): 2725-2741 (in Chinese with English abstract).
      Lucchitta, B. K., 1981. Mars and Earth: Comparison of Cold-Climate Features. Icarus, 45(2): 264-303. https://doi.org/10.1016/0019-1035(81)90035-x
      Lucchitta, B. K., 1984. Ice and Debris in the Fretted Terrain, Mars. Journal of Geophysical Research: Solid Earth, 89(S02): B409-B418. https://doi.org/10.1029/JB089iS02p0B409
      Madeleine, J. B., Forget, F., Head, J. W., et al., 2009. Amazonian Northern Mid-Latitude Glaciation on Mars: A Proposed Climate Scenario. Icarus, 203(2): 390-405. https://doi.org/10.1016/j.icarus.2009.04.037
      Madeleine, J. B., Head, J. W., Forget, F., et al., 2014. Recent Ice Ages on Mars: The Role of Radiatively Active Clouds and Cloud Microphysics. Geophysical Research Letters, 41(14): 4873-4879. https://doi.org/10.1002/2014GL059861
      Malin, M. C., Edgett, K. S., 2001. Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission. Journal of Geophysical Research: Planets, 106(E10): 23429-23570. https://doi.org/10.1029/2000je001455
      Mangold, N., 2003. Geomorphic Analysis of Lobate Debris Aprons on Mars at Mars Orbiter Camera Scale: Evidence for Ice Sublimation Initiated by Fractures. Journal of Geophysical Research: Planets, 108(E4): 8021. https://doi.org/10.1029/2002JE001885
      Mangold, N., Maurice, S., Feldman, W. C., et al., 2004. Spatial Relationships between Patterned Ground and Ground Ice Detected by the Neutron Spectrometer on Mars. Journal of Geophysical Research: Planets, 109(E8): E08001. https://doi.org/10.1029/2004je002235
      Mattei, E., Pettinelli, E., Lauro, S. E., et al., 2022. Assessing the Role of Clay and Salts on the Origin of MARSIS Basal Bright Reflections. Earth and Planetary Science Letters, 579: 117370. https://doi.org/10.1016/j.epsl.2022.117370
      McGill, G. E., Hills, L. S., 1992. Origin of Giant Martian Polygons. Journal of Geophysical Research: Planets, 97(E2): 2633-2647. https://doi.org/10.1029/91JE02863
      Mellon, M. T., Arvidson, R. E., Marlow, J. J., et al., 2008a. Periglacial Landforms at the Phoenix Landing Site and the Northern Plains of Mars. Journal of Geophysical Research: Planets, 113(E3): E00A23. https://doi.org/10.1029/2007JE003039
      Mellon, M. T., Boynton, W. V., Feldman, W. C., et al., 2008b. A Prelanding Assessment of the Ice Table Depth and Ground Ice Characteristics in Martian Permafrost at the Phoenix Landing Site. Journal of Geophysical Research: Planets, 113(E3): E00A25. https://doi.org/10.1029/2007je003067
      Mellon, M. T., Arvidson, R. E., Sizemore, H. G., et al., 2009. Ground Ice at the Phoenix Landing Site: Stability State and Origin. Journal of Geophysical Research: Planets, 114(E1): E00E07. https://doi.org/10.1029/2009je003417
      Milkovich, S. M., Head, J. W., Marchant, D. R., 2006. Debris-Covered Piedmont Glaciers along the Northwest Flank of the Olympus Mons Scarp: Evidence for Low-Latitude Ice Accumulation during the Late Amazonian of Mars. Icarus, 181(2): 388-407. https://doi.org/10.1016/j.icarus.2005.12.006
      Milliken, R. E., Mustard, J. F., Goldsby, D. L., 2003. Viscous Flow Features on the Surface of Mars: Observations from High-Resolution Mars Orbiter Camera (MOC) Images. Journal of Geophysical Research: Planets, 108(E6): 5057. https://doi.org/10.1029/2002je002005
      Mischna, M. A., Richardson, M. I., Wilson, R. J., et al., 2003. On the Orbital Forcing of Martian Water and CO2 Cycles: A General Circulation Model Study with Simplified Volatile Schemes. Journal of Geophysical Research: Planets, 108(E6): 5062. https://doi.org/10.1029/2003je002051
      Morgan, G. A., Head, J. W., Marchant, D. R., 2009. Lineated Valley Fill (LVF) and Lobate Debris Aprons (LDA) in the Deuteronilus Mensae Northern Dichotomy Boundary Region, Mars: Constraints on the Extent, Age and Episodicity of Amazonian Glacial Events. Icarus, 202(1): 22-38. https://doi.org/10.1016/j.icarus.2009.02.017
      Morgan, G. A., Putzig, N. E., Perry, M. R., et al., 2021. Availability of Subsurface Water-Ice Resources in the Northern Mid-Latitudes of Mars. Nature Astronomy, 5: 230-236. https://doi.org/10.1038/s41550-020-01290-z
      Mouginot, J., Kofman, W., Safaeinili, A., et al., 2009. MARSIS Surface Reflectivity of the South Residual Cap of Mars. Icarus, 201(2): 454-459. https://doi.org/10.1016/j.icarus.2009.01.009
      Mouginot, J., Pommerol, A., Kofman, W., et al., 2010. The 3-5 MHz Global Reflectivity Map of Mars by MARSIS/Mars Express: Implications for the Current Inventory of Subsurface H2O. Icarus, 210(2): 612-625. https://doi.org/10.1016/j.icarus.2010.07.003
      Musselwhite, D. S., Swindle, T. D., Lunine, J. I., 2001. Liquid CO2 Breakout and the Formation of Recent Small Gullies on Mars. Geophysical Research Letters, 28(7): 1283-1285. https://doi.org/10.1029/2000GL012496
      Mustard, J. F., Cooper, C. D., Rifkin, M. K., 2001. Evidence for Recent Climate Change on Mars from the Identification of Youthful Near-Surface Ground Ice. Nature, 412: 411-414. https://doi.org/10.1038/35086515
      Mutch, T. A., Arvidson, R. E., Binder, A. B., et al., 1977. The Geology of the Viking Lander 2 Site. Journal of Geophysical Research, 82(28): 4452-4467. https://doi.org/10.1029/JS082i028p04452
      Ng, F. S. L., Zuber, M. T., 2006. Patterning Instability on the Mars Polar Ice Caps. Journal of Geophysical Research: Planets, 111(E2): E02005. https://doi.org/10.1029/2005je002533
      Orosei, R., Lauro, S. E., Pettinelli, E., et al., 2018. Radar Evidence of Subglacial Liquid Water on Mars. Science, 361(6401): 490-493. https://doi.org/10.1126/science.aar7268
      Pathare, A. V., Feldman, W. C., Prettyman, T. H., et al., 2018. Driven by Excess? Climatic Implications of New Global Mapping of Near-Surface Water-Equivalent Hydrogen on Mars. Icarus, 301: 97-116. https://doi.org/10.1016/j.icarus.2017.09.031
      Pierce, T. L., Crown, D. A., 2003. Morphologic and Topographic Analyses of Debris Aprons in the Eastern Hellas Region, Mars. Icarus, 163(1): 46-65. https://doi.org/10.1016/s0019-1035(03)00046-0
      Plaut, J. J., Picardi, G., Safaeinili, A., et al., 2007. Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science, 316(5821): 92-95. https://doi.org/10.1126/science.1139672
      Plaut, J. J., Safaeinili, A., Holt, J. W., et al., 2009. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Geophysical Research Letters, 36(2): L02203. https://doi.org/10.1029/2008GL036379
      Plug, L. J., Werner, B. T., 2001. Fracture Networks in Frozen Ground. Journal of Geophysical Research: Solid Earth, 106(B5): 8599-8613. https://doi.org/10.1029/2000jb900320
      Schon, S. C., Head, J. W., Fassett, C. I., 2012. Recent High-Latitude Resurfacing by a Climate-Related Latitude-Dependent Mantle: Constraining Age of Emplacement from Counts of Small Craters. Planetary and Space Science, 69(1): 49-61. https://doi.org/10.1016/j.pss.2012.03.015
      Séjourné, A., Costard, F., Gargani, J., et al., 2011. Scalloped Depressions and Small-Sized Polygons in Western Utopia Planitia, Mars: A New Formation Hypothesis. Planetary and Space Science, 59(5-6): 412-422. https://doi.org/10.1016/j.pss.2011.01.007
      Séjourné, A., Costard, F., Swirad, Z. M., et al., 2019. Grid Mapping the Northern Plains of Mars: Using Morphotype and Distribution of Ice-Related Landforms to Understand Multiple Ice-Rich Deposits in Utopia Planitia. Journal of Geophysical Research: Planets, 124(2): 483-503. https://doi.org/10.1029/2018je005665
      Sharp, R. P., 1973. Mars: Fretted and Chaotic Terrains. Journal of Geophysical Research, 78(20): 4073-4083. https://doi.org/10.1029/JB078i020p04073
      Shean, D. E., 2010. Candidate Ice-Rich Material within Equatorial Craters on Mars. Geophysical Research Letters, 37(24): L24202. https://doi.org/10.1029/2010GL045181
      Shean, D. E., Head, J. W. Ⅲ, Fastook, J. L., et al., 2007. Recent Glaciation at High Elevations on Arsia Mons, Mars: Implications for the Formation and Evolution of Large Tropical Mountain Glaciers. Journal of Geophysical Research: Planets, 112(E3): E03004. https://doi.org/10.1029/2006JE002761
      Shean, D. E., Head, J. W., Marchant, D. R., 2005. Origin and Evolution of a Cold-Based Tropical Mountain Glacier on Mars: The Pavonis Mons Fan-Shaped Deposit. Journal of Geophysical Research: Planets, 110(E5): E05001. https://doi.org/10.1029/2004je002360
      Sizemore, H. G., Zent, A. P., Rempel, A. W., 2015. Initiation and Growth of Martian Ice Lenses. Icarus, 251: 191-210. https://doi.org/10.1016/j.icarus.2014.04.013
      Smith, I. B., 2022. A Retrospective on Mars Polar Ice and Climate. Oxford University Press, Oxford.
      Smith, I. B., Lalich, D. E., Rezza, C., et al., 2021. A Solid Interpretation of Bright Radar Reflectors under the Mars South Polar Ice. Geophysical Research Letters, 48(15): e2021GL093618. https://doi.org/10.1029/2021GL093618
      Smith, I. B., Putzig, N. E., Holt, J. W., et al., 2016. An Ice Age Recorded in the Polar Deposits of Mars. Science, 352(6289): 1075-1078. https://doi.org/10.1126/science.aad6968
      Smith, P. H., Tamppari, L. K., Arvidson, R. E., et al., 2009. H2O at the Phoenix Landing Site. Science, 325(5936): 58-61. https://doi.org/10.1126/science.1172339
      Soderblom, L. A., Kreidler, T. J., Masursky, H., 1973. Latitudinal Distribution of a Debris Mantle on the Martian Surface. Journal of Geophysical Research, 78(20): 4117-4122. https://doi.org/10.1029/jb078i020p04117
      Sori, M. M., Bramson, A. M., 2019. Water on Mars, with a Grain of Salt: Local Heat Anomalies are Required for Basal Melting of Ice at the South Pole Today. Geophysical Research Letters, 46(3): 1222-1231. https://doi.org/10.1029/2018GL080985.
      Squyres, S. W., 1978. Martian Fretted Terrain: Flow of Erosional Debris. Icarus, 34(3): 600-613. https://doi.org/10.1016/0019-1035(78)90048-9
      Squyres, S. W., 1979. The Distribution of Lobate Debris Aprons and Similar Flows on Mars. Journal of Geophysical Research: Solid Earth, 84(B14): 8087-8096. https://doi.org/10.1029/JB084iB14p08087
      Squyres, S. W., Carr, M. H., 1986. Geomorphic Evidence for the Distribution of Ground Ice on Mars. Science, 231(4735): 249-252. https://doi.org/10.1126/science.231.4735.249
      Tanaka, K., Rodriguez, J., Skinnerjr, J., et al., 2008. North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification. Icarus, 196(2): 318-358. https://doi.org/10.1016/j.icarus.2008.01.021
      Titus, T. N., Kieffer, H. H., Christensen, P. R., 2003. Exposed Water Ice Discovered near the South Pole of Mars. Science, 299(5609): 1048-1051. https://doi.org/10.1126/science.1080497
      Treiman, A. H., 2003. Geologic Settings of Martian Gullies: Implications for Their Origins. Journal of Geophysical Research: Planets, 108(E4): 8031. https://doi.org/10.1029/2002je001900
      Tulaczyk, S. M., Foley, N. T., 2020. The Role of Electrical Conductivity in Radar Wave Reflection from Glacier Beds. The Cryosphere, 14(12): 4495-4506. https://doi.org/10.5194/tc-14-4495-2020
      Wagstaff, K. L., Titus, T. N., Ivanov, A. B., et al., 2008. Observations of the North Polar Water Ice Annulus on Mars Using THEMIS and TES. Planetary and Space Science, 56(2): 256-265. https://doi.org/10.1016/j.pss.2007.08.008
      Warner, N. H., Gupta, S., Calef, F., et al., 2015. Minimum Effective Area for High Resolution Crater Counting of Martian Terrains. Icarus, 245: 198-240. https://doi.org/10.1016/j.icarus.2014.09.024
      Xiao, L., 2022. What Geological Habitability Evolution did Mars Undergo? Earth Science, 47(10): 3792-3793(in Chinese).
      Xiao, L., 2023. Evolution of the Geological Environment and Exploration for Life on Mars. Journal of Earth Science, 34(5): 1626-1628. https://doi.org/10.1007/s12583-023-1929-7
      Zhao, J. N., Shi, Y. T., Zhang, M. J., et al., 2021. Advances in Martian Water-Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768 (in Chinese with English abstract).
      刘洋, 刘正豪, 吴兴, 等, 2021. 火星的水环境演化. 地质学报, 95(9): 2725-2741. doi: 10.3969/j.issn.0001-5717.2021.09.007
      肖龙, 2022. 火星的地质环境及宜居性演变历史如何?地球科学, 47(10): 3792-3793. doi: 10.3799/dqkx.2022.811
      赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95(9): 2755-2768. doi: 10.3969/j.issn.0001-5717.2021.09.009
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(1)

      Article views (1321) PDF downloads(129) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return