• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 1
    Jan.  2025
    Turn off MathJax
    Article Contents
    Liao Anjie, Zhang Yan, Wang Fei, Ma Yu, 2025. Thermal Damage and Energy Characteristics of Sandstone under Real-Time High Temperatures. Earth Science, 50(1): 286-298. doi: 10.3799/dqkx.2023.206
    Citation: Liao Anjie, Zhang Yan, Wang Fei, Ma Yu, 2025. Thermal Damage and Energy Characteristics of Sandstone under Real-Time High Temperatures. Earth Science, 50(1): 286-298. doi: 10.3799/dqkx.2023.206

    Thermal Damage and Energy Characteristics of Sandstone under Real-Time High Temperatures

    doi: 10.3799/dqkx.2023.206
    • Received Date: 2023-08-19
      Available Online: 2025-02-10
    • Publish Date: 2025-01-25
    • The damage and energy evolution characteristics of rocks under real-time high temperature are hot and difficult issues in deep geological engineering. MTS815 program-controlled servo rigid testing machine and PCI-Ⅱ acoustic emission instrument were used for triaxial compression tests of sandstone under real-time high temperatures in this study, and the mechanical and energy characteristics of sandstone under high temperature were analyzed and discussed based on the test results and introducing the law of energy consumption evolution. The results show that: (1) There is a temperature threshold between 120 ℃ and 150 ℃, which leads to thermal damage inside sandstone, and its peak strength is greatly reduced, and the macroscopic failure form is transformed from shear failure to tensile failure. (2) When the temperature is between 20 ℃ and 120 ℃, the accumulated AE energy, stored energy and released energy of sandstone increase with the increase of temperature; and when the temperature is 150 ℃, thermal damage occurs inside sandstone. Ac cumulative AE energy, energy storage capacity and energy release capacity were significantly reduced. (3) The brittleness index of rock BE decreases with the increase of temperature. At the temperature of 120-150 ℃, the sandstone BE value decreases greatly from about 0.5 to 0.26, showing obvious plastic characteristics. The influence of temperature on the mechanical properties, failure mode, acoustic emission activity, strain energy evolution process and brittle state of sandstone is systematically analyzed. It is found that there is an obvious temperature threshold, which changes all kinds of behaviors of sandstone obviously before and after the threshold.

       

    • loading
    • Ai, C., Zhang, J., Li, Y. W., et al., 2016. Estimation Criteria for Rock Brittleness Based on Energy Analysis during the Rupturing Process. Rock Mechanics and Rock Engineering, 49(12): 4681-4698. https://doi.org/10.1007/s00603-016-1078-x
      Altindag, R., 2003. Correlation of Specific Energy with Rock Brittleness Concepts on Rock Cutting. Journal of the South African Institute of Mining and Metallurgy, 103(3): 163-171. http://reference.sabinet.co.za/webx/access/journal_archive/0038223X/2979.pdf
      Bai, F. T., Sun, Y. H., Liu, Y. M., et al., 2017. Evaluation of the Porous Structure of Huadian Oil Shale during Pyrolysis Using Multiple Approaches. Fuel, 187: 1-8. https://doi.org/10.1016/j.fuel.2016.09.012
      Chen, G. Q., Jiang, W. Z., Sun, X., et al., 2019. Quantitative Evaluation of Rock Brittleness Based on Crack Initiation Stress and Complete Stress-Strain Curves. Bulletin of Engineering Geology and the Environment, 78(8): 5919-5936. https://doi.org/10.1007/s10064-019-01486-2
      Chen, G. Q., Wu, J. C., Jiang, W. Z., et al., 2020. An Evaluation Method of Rock Brittleness Based on the Whole Process of Elastic Energy Evolution. Chinese Journal of Rock Mechanics and Engineering, 39(5): 901-911 (in Chinese with English abstract).
      Chen, H. Q., Meng, L. B., 2019. Mechanical Characteristics and Acoustic Emission Characteristics of Limestone Triaxial Unloading after High Temperature Effect. Safety in Coal Mines, 50(4): 58-62 (in Chinese with English abstract).
      Deng, H. F., Yuan, X. F., Li, J. L., et al., 2014. Fracture Mechanics Characteristics and Deterioration Mechanism of Sandstone under Reservoir Immersion Interaction. Earth Science, 39(1): 108-114 (in Chinese with English abstract).
      Gautam, P. K., Verma, A. K., Maheshwar, S., et al., 2016. Thermomechanical Analysis of Different Types of Sandstone at Elevated Temperature. Rock Mechanics and Rock Engineering, 49(5): 1985-1993. https://doi.org/10.1007/s00603-015-0797-8
      Hajiabdolmajid, V., Kaiser, P., 2003. Brittleness of Rock and Stability Assessment in Hard Rock Tunneling. Tunnelling and Underground Space Technology, 18(1): 35-48. https://doi.org/10.1016/S0886-7798(02)00100-1
      Jiang, H. P., Jiang, A. N., Yang, X. R., 2021. Statistical Damage Constitutive Model of High Temperature Rock Based on Weibull Distribution and Its Verification. Rock and Soil Mechanics, 42(7): 1894-1902 (in Chinese with English abstract).
      Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., et al., 2017. Mechanical Behaviour of Australian Strathbogie Granite under In-Situ Stress and Temperature Conditions: An Application to Geothermal Energy Extraction. Geothermics, 65: 44-59. https://doi.org/10.1016/j.geothermics.2016.07.002
      Li, B. B., Yang, K., Yuan, M., et al., 2017. Effect of Pore Pressure on Seepage Characteristics of Coal and Rock at Different Temperatures. Earth Science, 42(8): 1403-1412 (in Chinese with English abstract).
      Li, C. D., Meng, J., Xiang, L. Y., et al., 2023. Multi-Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region. Earth Science, 48(12): 4658-4667 (in Chinese with English abstract).
      Li, Q. S., Yang, S. Q., Chen, G. F., 2014. Strength and Deformation Properties of Post-High-Temperature Joint Sandstone. Journal of China Coal Society, 39(4): 651-657 (in Chinese with English abstract).
      Li, T. B., Chen, Z. Q., Chen, G. Q., et al., 2015. An Experimental Study of Energy Mechanism of Sandstone with Different Moisture Contents. Rock and Soil Mechanics, 36(S2): 229-236 (in Chinese with English abstract).
      Liang, S. F., Fang, S. Z., Wei, G. H., et al., 2021. Experiments on Mechanical Properties of Siliceous Sandstone after High Temperature. Journal of Zhengzhou University (Engineering Science), 42(3): 87-92 (in Chinese with English abstract).
      Liu, Q. S., Xu, X. C., 2000. Damage Analysis of Brittle Rock at High Temperature. Chinese Journal of Rock Mechanics and Engineering, 19(4): 408-411 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.04.002
      Liu, X. F., Zhao, Y. Q., Wang, X. R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198 (in Chinese with English abstract).
      Meng, L. B., Li, T. B., Xu, J., et al., 2012. Experimental Study on Influence of Confining Pressure on Shale Mechanical Properties under High Temperature Condition. Journal of China Coal Society, 37(11): 1829-1833 (in Chinese with English abstract).
      Meng, W., He, C., Wu, F. Y., et al., 2022. Effects of Thermal Stress of Rock Masses Generated by Geothermal Gradient on Rockburst Prediction. Journal of Southwest Jiaotong University, 57(4): 903-909 (in Chinese with English abstract).
      Qin, Y., Tian, H., Xu, N. X., et al., 2020. Physical and Mechanical Properties of Granite after High-Temperature Treatment. Rock Mechanics and Rock Engineering, 53: 305-322. https://doi.org/10.1007/s00603-019-01919-0
      Su, C. D., Guo, W. B., Li, X. S., 2008. Experimental Research on Mechanical Properties of Coarse Sandstone after High Temperatures. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1162-1170 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.06.009
      Tang, H. M., Zhang, Y. H., Sun, Y. Z., 2007. A Study of Equivalent Deformability Parameters in Rock Masses. Earth Science, 32(3): 389-396 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2007.03.012
      Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931 (in Chinese with English abstract).
      Tarasov, B. G., Potvin, Y., 2013. Universal Criteria for Rock Brittleness Estimation under Triaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 59(4): 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011
      Wan, Z. J., Zhao, Y. S., Dong, F. K., et al., 2008. Experimental Study on Mechanical Characteristics of Granite under High Temperatures and Triaxial Stresses. Chinese Journal of Rock Mechanics and Engineering, 27(1): 72-77 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.01.011
      Wang, X. G., Hu, B., Tang, H. M., et al., 2016. Triaxial Rheological Experiments and Rheological Constitutive of Mudstone under Hydro-Mechanical Coupling State. Earth Science, 41(5): 886-894 (in Chinese with English abstract).
      Wang, Z. Z., Qin, B. D., Guo, J. Q., et al., 2022. Influence of High Temperature Treatment on Mechanical Properties and Energy Evolution Mechanism of Sandstone. Journal of Henan Polytechnic University (Natural Science), 41(6): 181-187 (in Chinese with English abstract).
      Wen, T., Zhang, X., Sun, J. S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396 (in Chinese with English abstract).
      Wu, G., Wang, D. Y., Zhai, S. T., 2012. Acoustic Emission Characteristics of Sandstone after High Temperature under Uniaxial Compression. Rock and Soil Mechanics, 33(11): 3237-3242 (in Chinese with English abstract).
      Xie, H. P., Ju, Y., Li, L. Y., 2005. Criteria for Strength and Structural Failure of Rocks Based on Energy Dissipation and Energy Release Principles. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.001
      Yang, S. Q., Ranjith, P. G., Jing, H. W., et al., 2017. An Experimental Investigation on Thermal Damage and Failure Mechanical Behavior of Granite after Exposure to Different High Temperature Treatments. Geothermics, 65: 180-197. https://doi.org/10.1016/j.geothermics.2016.09.008
      Yin, G. Z., Li, X. S., Zhao, H. B., 2009. Experimental Investigation on Mechanical Properties of Coarse Sandstone after High Temperature under Conventional Triaxial Compression. Chinese Journal of Rock Mechanics and Engineering, 28(3): 598-604 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.03.020
      Zhang, H., Li, T. B., Chen, G. Q., et al., 2014. Acoustic Emission Characteristics of Granite in a Triaxial Compression Test at Different Temperatures. Modern Tunnelling Technology, 51(5): 33-40 (in Chinese with English abstract).
      Zhang, J., Ai, C., Li, Y. W., et al., 2018. Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51: 3343-3360. https://doi.org/10.1007/s00603-018-1535-9
      Zhang, L. Y., Lu, W. T., Mao, X. B., 2007. Experimental Research on Mechanical Properties of Sandstone at High Temperature. Journal of Mining & Safety Engineering, 24(3): 293-297 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-3363.2007.03.009
      Zhang, Y., Feng, X. T., Yang, C. X., et al., 2019. Fracturing Evolution Analysis of Beishan Granite under True Triaxial Compression Based on Acoustic Emission and Strain Energy. International Journal of Rock Mechanics and Mining Sciences, 117: 150-161. https://doi.org/10.1016/j.ijrmms.2019.03.029
      Zhang, Y., Feng, X. T., Yang, C. X., et al., 2021. Evaluation Method of Rock Brittleness under True Triaxial Stress States Based on Pre-Peak Deformation Characteristic and Post-Peak Energy Evolution. Rock Mechanics and Rock Engineering, 54: 1277-1291. https://doi.org/10.1007/s00603-020-02330-w
      Zunino, F., Castro, J., Lopez, M., 2015. Thermo-Mechanical Assessment of Concrete Microcracking Damage Due to Early-Age Temperature Rise. Construction and Building Materials, 81: 140-153. https://doi.org/10.1016/j.conbuildmat.2014.12.126
      Zuo, J. P., Zhou, H. W., Xie, H. P., et al., 2008. Meso-Experimental Research on Sandstone Failure Behavior under Thermal-Mechanical Coupling Effect. Rock and Soil Mechanics, 29(6): 1477-1482 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2008.06.009
      陈国庆, 吴家尘, 蒋万增, 等, 2020. 基于弹性能演化全过程的岩石脆性评价方法. 岩石力学与工程学报, 39(5): 901-911.
      陈海清, 孟陆波, 2019. 灰岩三轴卸荷力学特性及声发射特征的高温后效应. 煤矿安全, 50(4): 58-62.
      邓华锋, 原先凡, 李建林, 等, 2014. 浸泡作用下砂岩断裂力学特性及劣化机理. 地球科学, 39(1): 108-114. doi: 10.3799/dqkx.2014.011
      蒋浩鹏, 姜谙男, 杨秀荣, 2021. 基于Weibull分布的高温岩石统计损伤本构模型及其验证. 岩土力学, 42(7): 1894-1902.
      李波波, 杨康, 袁梅, 等, 2017. 不同温度下孔隙压力对煤岩渗流特性的影响机制. 地球科学, 42(8): 1403-1412.
      李长冬, 孟杰, 项林语, 等, 2023. 白鹤滩库首区砂岩结构多尺度演变机制. 地球科学, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486
      李庆森, 杨圣奇, 陈国飞, 2014. 高温后节理砂岩强度及变形破坏特性. 煤炭学报, 39(4): 651-657.
      李天斌, 陈子全, 陈国庆, 等, 2015. 不同含水率作用下砂岩的能量机制研究. 岩土力学, 36(S2): 229-236.
      梁书锋, 方士正, 韦贵华, 等, 2021. 高温作用后硅质砂岩力学性能试验. 郑州大学学报(工学报), 42(3): 87-92.
      刘泉声, 许锡昌, 2000. 温度作用下脆性岩石的损伤分析. 岩石力学与工程学报, 19(4): 408-411. doi: 10.3321/j.issn:1000-6915.2000.04.002
      刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186
      孟陆波, 李天斌, 徐进, 等, 2012. 高温作用下围压对页岩力学特性影响的试验研究. 煤炭学报, 37(11): 1829-1833.
      蒙伟, 何川, 吴枋胤, 等, 2022. 地温梯度孕育的岩体热应力对岩爆预测的影响. 西南交通大学学报, 57(4): 903-909.
      苏承东, 郭文兵, 李小双, 2008. 粗砂岩高温作用后力学效应的试验研究. 岩石力学与工程学报, 27(6): 1162-1170. doi: 10.3321/j.issn:1000-6915.2008.06.009
      唐辉明, 张宜虎, 孙云志, 2007. 岩体等效变形参数研究. 地球科学, 32(3): 389-396. http://www.earth-science.net/article/id/3465
      汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260
      万志军, 赵阳升, 董付科, 等, 2008. 高温及三轴应力下花岗岩体力学特性的实验研究. 岩石力学与工程学报, 27(1): 72-77. doi: 10.3321/j.issn:1000-6915.2008.01.011
      王新刚, 胡斌, 唐辉明, 等, 2016. 渗透压‒应力耦合作用下泥岩三轴流变实验及其流变本构. 地球科学, 41(5): 886-894. doi: 10.3799/dqkx.2016.075
      王珍珍, 秦本东, 郭佳奇, 等, 2022. 高温作用对煤系砂岩力学性能和能量演化机制的影响. 河南理工大学学报(自然科学版), 41(6): 181-187.
      温韬, 张馨, 孙金山, 等, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
      吴刚, 王德咏, 翟松韬, 2012. 单轴压缩下高温后砂岩的声发射特性. 岩土力学, 33(11): 3237-3242.
      谢和平, 鞠杨, 黎立云, 2005. 基于能量耗散与释放原理的岩石强度与整体破坏准则. 岩石力学与工程学报, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
      尹光志, 李小双, 赵洪宝, 2009. 高温后粗砂岩常规三轴压缩条件下力学特性试验研究. 岩石力学与工程学报, 28(3): 598-604. doi: 10.3321/j.issn:1000-6915.2009.03.020
      张航, 李天斌, 陈国庆, 等, 2014. 不同温度下花岗岩三轴压缩试验的声发射特性. 现代隧道技术, 51(5): 33-40.
      张连英, 卢文厅, 茅献彪, 2007. 高温作用下砂岩力学性能实验. 采矿与安全工程学报, 24(3): 293-297. doi: 10.3969/j.issn.1673-3363.2007.03.009
      左建平, 周宏伟, 谢和平, 等, 2008. 温度和应力耦合作用下砂岩破坏的细观试验研究. 岩土力学, 29(6): 1477-1482. doi: 10.3969/j.issn.1000-7598.2008.06.009
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(2)

      Article views (242) PDF downloads(28) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return