• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 1
    Jan.  2025
    Turn off MathJax
    Article Contents
    Deng Dazhen, Zhao Yanghui, Bryan Riel, Gao Jinyao, Fang Yinxia, 2025. Quantification and Unsupervised Clustering Analysis of Morphological Characteristics of Seamounts in South China Sea Basin. Earth Science, 50(1): 217-233. doi: 10.3799/dqkx.2023.218
    Citation: Deng Dazhen, Zhao Yanghui, Bryan Riel, Gao Jinyao, Fang Yinxia, 2025. Quantification and Unsupervised Clustering Analysis of Morphological Characteristics of Seamounts in South China Sea Basin. Earth Science, 50(1): 217-233. doi: 10.3799/dqkx.2023.218

    Quantification and Unsupervised Clustering Analysis of Morphological Characteristics of Seamounts in South China Sea Basin

    doi: 10.3799/dqkx.2023.218
    • Received Date: 2023-09-08
      Available Online: 2025-02-10
    • Publish Date: 2025-01-25
    • Morphological differences are evident among submarine volcanoes formed by varying eruption patterns. However, their interrelationship remains elusive due to methodological constraints. This study innovatively employs machine learning clustering analysis on high-resolution multibeam bathymetry data to quantitatively evaluate the morphological parameters of seamounts in the South China Sea Basin. The analysis discerns three distinct seamount types. Type Ⅰ: large, isolated seamounts characterized by significant volume, steep slopes, and rounded bases. Type Ⅱ: large, linear seamounts with substantial volume, gentle slopes, and elongated bases. Type Ⅲ: smaller seamounts with limited volume, gentle slopes, and elliptical bases. Type Ⅰ and Ⅱ seamounts are primarily found in the mid-ocean ridge zone of the eastern sub-basin. The pronounced morphology of Type Ⅰ suggests an active and rapid eruption regime, whereas Type Ⅱ's subdued form indicates slower volcanic activity with more fluidic lava flows. Conversely, Type Ⅲ, situated along the transform faults and distant from the mid-ocean ridge of the eastern sub-basin, signifies less intense volcanic activities. This research establishes a foundational understanding that seamount formations under distinct tectonic backgrounds follow general morphological patterns. The novel clustering approach proposed here offers fresh perspectives for probing volcanic eruption patterns, especially when extensive petrological data is not available.

       

    • loading
    • Arabie, P., Hubert, L. J., 1996. An Overview of Combinatorial Data Analysis. In: Arabie, P., Hubert, L. J., De Soete, G., eds., Clusering and Classificaion. Word Scientific, Singapore, 5-63. https://doi.org/10.1142/9789812832153_0002
      Barckhausen, U., Engels, M., Franke, D., et al., 2014. Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 58: 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      Castruccio, A., Diez, M., Gho, R., 2017. The Influence of Plumbing System Structure on Volcano Dimensions and Topography. Journal of Geophysical Research: Solid Earth, 122(11): 8839-8859. https://doi.org/10.1002/2017JB014855
      Chen, J., Zhu, B. D., Wen, N., et al., 2012. Gravity-Magnetic Response of the Islands and Seamounts of South China Sea. Chinese Journal of Geophysics, 55(9): 3152-3162 (in Chinese with English abstract).
      Chen, L., Wang, X., Liang, X. F., et al., 2020. Subduction Tectonics vs. Plume Tectonics—Discussion on Driving Forces for Plate Motion. Scientia Sinica Terrae, 50(4): 501-514 (in Chinese).
      Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      Dingwell, D. B., 1996. Volcanic Dilemma—Flow or Blow? Science, 273(5278): 1054-1055. https://doi.org/10.1126/science.273.5278.1054
      Francis, P., 1993. Volcanoes: A Planetary Perspective. Clarendon Press, New York.
      Kim, S. S., Wessel, P., 2011. New Global Seamount Census from Altimetry-Derived Gravity Data. Geophysical Journal International, 186(2): 615-631. https://doi.org/10.1111/j.1365-246X.2011.05076.x
      Kim, S. S., Wessel, P., 2015. Finding Seamounts with Altimetry-Derived Gravity Data. OCEANS 2015-MTS/IEEE. IEEE, Washington, D. C. . https://doi.org/10.23919/oceans.2015.7401883
      Koppers, A. A. P., Watts, A. B., 2010. Intraplate Seamounts as a Window into Deep Earth Processes. Oceanography, 23(1): 42-57. https://doi.org/10.5670/oceanog.2010.61
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      Li, G., Zhang, L. L., Zhu, L., 2011. Research on the Tectonic Features and Gravity-Magnetic Characteristics of Continental Margins in the South China Sea. Progress in Geophysics, 26(3): 858-875 (in Chinese with English abstract).
      Li, J. B., Ding, W. W., Gao, J. Y., et al., 2011. Cenozoic Evolution Model of the Sea-Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.003
      Li, S. Z., Zhao, S. J., Liu, X., et al., 2014. Ocean-Continent Transition and Coupling Processes. Periodical of Ocean University of China, 44(10): 113-133 (in Chinese with English abstract).
      Li, X. H., Li, J. B., Yu, X., et al., 2015. 40Ar/39Ar Ages of Seamount Trachytes from the South China Sea and Implications for the Evolution of the Northwestern Sub-Basin. Geoscience Frontiers, 6(4): 571-577. https://doi.org/10.1016/j.gsf.2014.08.003
      MacQueen, J., 1967. Some Methods for Classification and Analysis of Multivariate Observations. In: The Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, 281-297.
      Maire, E., Lelièvre, E., Brau, D., et al., 2000. Development of an Ultralow-Light-Level Luminescence Image Analysis System for Dynamic Measurements of Transcriptional Activity in Living and Migrating Cells. Analytical Biochemistry, 280(1): 118-127. https://doi.org/10.1006/abio.2000.4503
      Meyer, F., 1979. Iterative Image Transformations for an Automatic Screening of Cervical Smears. Arthropod Structure & Development, 27(1): 128-135. https://doi.org/10.1177/27.1.438499
      Morgan, W. J., 1971. Convection Plumes in the Lower Mantle. Nature, 230(5288): 42-43. https://doi.org/10.1038/230042a0
      Papale, P., 1999. Strain-Induced Magma Fragmentation in Explosive Eruptions. Nature, 397(6718): 425-428. https://doi.org/10.1038/17109
      Peng, X., Li, C. F., Song, T. R., et al., 2022. Deep Structures and Lithospheric Breakup Processes at Northern Continent-Ocean Transition Zone of the South China Sea. Earth Science, 47(11): 4245-4255 (in Chinese with English abstract).
      Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract).
      Robinson, J. E., Eakins, B. W., 2006. Calculated Volumes of Individual Shield Volcanoes at the Young End of the Hawaiian Ridge. Journal of Volcanology and Geothermal Research, 151(1-3): 309-317. https://doi.org/10.1016/j.jvolgeores.2005.07.033
      Sandwell, D. T., Müller, R. D., Smith, W. H. F., et al., 2014. New Global Marine Gravity Model from CryoSat-2 and Jason-1 Reveals Buried Tectonic Structure. Science, 346(6205): 65-67. https://doi.org/10.1126/science.1258213
      Sandwell, D. T., Goff, J. A., Gevorgian, J., et al., 2022. Improved Bathymetric Prediction Using Geological Information: Synbath. Earth and Space Science, 9(2): e02069. https://doi.org/10.1029/2021ea002069
      Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022
      Smith, D. K., 1988. Shape Analysis of Pacific Seamounts. Earth and Planetary Science Letters, 90(4): 457-466. https://doi.org/10.1016/0012-821X(88)90143-4
      Song, X., Li, C., Yao, Y., et al. 2017. Magmatism in the Evolution of the South China Sea: Geophysical Characterization. Marine Geology, 394(1): 4-15. https://doi.org/10.1016/j.margeo.2017.07.021
      Sparks, R. S. J., 2003. Dynamics of Magma Degassing. Geological Society, London, Special Publications, 213(1): 5-22. https://doi.org/10.1144/gsl.sp.2003.213.01.02
      Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019jb017584
      Tibaldi, A., 1995. Morphology of Pyroclastic Cones and Tectonics. Journal of Geophysical Research: Solid Earth, 100(B12): 24521-24535. https://doi.org/10.1029/95jb02250
      Tozer, B., Sandwell, D. T., Smith, W. H. F., et al., 2019. Global Bathymetry and Topography at 15 ArcSec: SRTM15+. Earth and Space Science, 6(10): 1847-1864. https://doi.org/10.1029/2019ea000658
      Unger Moreno, K. A., Thal, J., Bach, W., et al., 2021. Volcanic Structures and Magmatic Evolution of the Vesteris Seamount, Greenland Basin. Frontiers in Earth Science, 9: 1-14. https://doi.org/10.3389/feart.2021.711910
      Wu, Z. Y., Wen, Z. H., 2021. Marine Geology of China Sea. Science Press, Beijing (in Chinese).
      Xu, H. H., Ma, H., Song, H. B., et al., 2011. Numerical Simulation of Eastern South China Sea Basin Expansion. Chinese Journal of Geophysics, 54(12): 3070-3078 (in Chinese with English abstract).
      Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(20): 1863-1878 (in Chinese). doi: 10.1360/csb2012-57-20-1863
      Xu, Z. Y., Wang, J., Yao, Y. J., et al., 2021. The Temporal-Spatial Distribution and Deep Structure of the Zhongnan-Liyue Fault Zone in the North of the South China Sea Basin. Earth Science, 46(3): 942-955 (in Chinese with English abstract).
      Yan, P., Wang, Y. L., Liu, H. L., 2008a. Post-Spreading Transpressive Faults in the South China Sea Basin. Tectonophysics, 450(1-4): 70-78. https://doi.org/10.1016/j.tecto.2008.01.015
      Yan, Q. S., Shi, X. F., Yang, Y. M., et al., 2008b. Potassium-Argon/Argon-40-Argon-39 Geochronology of Cenozoic Alkali Basalts from the South China Sea. Acta Oceanologica Sinica, 27(6): 115-123.
      Yan, Q. S., Castillo, P., Shi, X. F., et al., 2015. Geochemistry and Petrogenesis of Volcanic Rocks from Daimao Seamount (South China Sea) and Their Tectonic Implications. Lithos, 218: 117-126. https://doi.org/10.1016/j.lithos.2014.12.023
      Yan, Q. S., Shi, X. F., 2007. Hainan Mantle Plume and the Formation and Evolution of the South China Sea. Geological Journal of China Universities, 13(2): 311-322 (in Chinese with English abstract).
      Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005
      Yan, Q. S., Shi, X. F., Metcalfe, I., et al., 2018. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia. Scientific Reports, 8(1): 2640. https://doi.org/10.1038/s41598-018-20712-7
      Yang, S. X., Qiu, Y., Zhu, B. D., et al., 2015. Geologic and Geophysical Atlas of the South China Sea. China Navigation Charts Press, Tianjin (in Chinese).
      Yang, S. Y., Fang, N. Q., Yang, S. X., et al., 2011. A Further Discussion on Formation Background and Tectonic Constraints of Igneous Rocks in Central Sub-Basin of the South China Sea. Earth Science, 36(3): 455-470 (in Chinese with English abstract).
      Yao, B. C., 1995. Characteristics and Tectonic Significance of the Zhongnan-Liyue Fault. Research of Geological South China Sea, 1-14 (in Chinese).
      Zhang, C. M., Sun, Z., Zhao, M. H., et al., 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353 (in Chinese with English abstract).
      Zhang, G. L., Luo, Q., Zhao, J., et al., 2018. Geochemical Nature of Sub-Ridge Mantle and Opening Dynamics of the South China Sea. Earth and Planetary Science Letters, 489: 145-155. https://doi.org/10.1016/j.epsl.2018.02.040
      Zhao, D. P., 2007. Seismic Images under 60 Hotspots: Search for Mantle Plumes. Gondwana Research, 12(4): 335-355. https://doi.org/10.1016/j.gr.2007.03.001
      Zhao, M. H., He, E. Y., Sibuet, J. C., et al., 2018. Postseafloor Spreading Volcanism in the Central East South China Sea and Its Formation through an Extremely Thin Oceanic Crust. Geochemistry, Geophysics, Geosystems, 19(3): 621-641. https://doi.org/10.1002/2017gc007034
      Zhao, M. H., Qiu, X. L., Xu, H. L., et al., 2011. Deep Seismic Surveys in the Southern South China Sea and Contrast on Its Conjugate Margins. Earth Science, 36(5): 823-830 (in Chinese with English abstract).
      Zhao, Y. H., Ding, W. W., Yin, S. R., et al., 2020. Asymmetric Post-Spreading Magmatism in the South China Sea: Based on the Quantification of the Volume and Its Spatiotemporal Distribution of the Seamounts. International Geology Review, 62(7/8): 955-969. https://doi.org/10.1080/00206814.2019.1577189
      陈洁, 朱本铎, 温宁, 等, 2012. 南海海岛海山的重磁响应特征. 地球物理学报, 55(9): 3152-3162.
      陈凌, 王旭, 梁晓峰, 等, 2020. 俯冲构造vs. 地幔柱构造——板块运动驱动力探讨. 中国科学: 地球科学, 50(4): 501-514.
      李刚, 张丽莉, 朱鲁, 2011. 南海大陆边缘构造活动与重磁场特征研究. 地球物理学进展, 26(3): 858-875.
      李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015. doi: 10.3969/j.issn.0001-5733.2011.12.003
      李三忠, 赵淑娟, 刘鑫, 等, 2014. 洋‒陆转换与耦合过程. 中国海洋大学学报(自然科学版), 44(10): 113-133.
      彭希, 李春峰, 宋陶然, 等, 2022. 南海北部洋‒陆过渡带深部结构与岩石圈破裂过程. 地球科学, 47(11): 4245-4255. doi: 10.3799/dqkx.2022.366
      任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      吴自银, 温珍河, 2021. 中国近海海洋地质. 北京: 科学出版社.
      许鹤华, 马辉, 宋海斌, 等, 2011. 南海东部海盆扩张过程的数值模拟. 地球物理学报, 54(12): 3070-3078.
      徐义刚, 魏静娴, 邱华宁, 等, 2012. 用火山岩制约南海的形成演化: 初步认识与研究设想. 科学通报, 57(20): 1863-1878.
      徐子英, 汪俊, 姚永坚, 等, 2021. 中南‒礼乐断裂带在南海海盆北部的时空展布与深部结构. 地球科学, 46(3): 942-955.
      鄢全树, 石学法, 2007. 海南地幔柱与南海形成演化. 高校地质学报, 13(2): 311-322.
      杨胜雄, 邱燕, 朱本铎, 等, 2015. 南海地质地球物理图系. 天津: 中国航海图书出版社.
      杨蜀颖, 方念乔, 杨胜雄, 等, 2011. 关于南海中央次海盆海山火山岩形成背景与构造约束的再认识. 地球科学, 36(3): 455-470. doi: 10.3799/dqkx.2011.048
      姚伯初, 1995. 中南‒礼乐断裂的特征及其构造意义. 南海地质研究, 1-14.
      张翠梅, 孙珍, 赵明辉, 等, 2022. 南海北部陆缘结构及构造‒岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208
      赵明辉, 丘学林, 徐辉龙, 等, 2011. 南海南部深地震探测及南北共轭陆缘对比. 地球科学, 36(5): 823-830. doi: 10.3799/dqkx.2011.085
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (215) PDF downloads(42) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return