Citation: | Wang Lu, Jin Zhijun, Lü Zeiyu, Su Yutong, 2024. Research Progress in Underground Hydrogen Storage. Earth Science, 49(6): 2044-2057. doi: 10.3799/dqkx.2024.001 |
Ali, A., 2021. Data-Driven Based Machine Learning Models for Predicting the Deliverability of Underground Natural Gas Storage in Salt Caverns. Energy, 229: 120648. https://doi.org/10.1016/j.energy.2021.120648
|
Ali, M., Yekeen, N., Pal, N., et al., 2022. Influence of Organic Molecules on Wetting Characteristics of Mica/H2/Brine Systems: Implications for Hydrogen Structural Trapping Capacities. Journal of Colloid and Interface Science, 608: 1739-1749. https://doi.org/10.1016/j.jcis.2021.10.080
|
Alonso Frank, M., Meltzer, C., Braunschweig, B., et al., 2017. Functionalization of Steel Surfaces with Organic Acids: Influence on Wetting and Corrosion Behavior. Applied Surface Science, 404: 326-333. https://doi.org/10.1016/j.apsusc.2017.01.199
|
Al-Yaseri, A., Jha, N. K., 2021. On Hydrogen Wettability of Basaltic Rock. Journal of Petroleum Science and Engineering, 200: 108387. https://doi.org/10.1016/j.petrol.2021.108387
|
Arif, M., Rasool Abid, H., Keshavarz, A., et al., 2022. Hydrogen Storage Potential of Coals as a Function of Pressure, Temperature, and Rank. Journal of Colloid and Interface Science, 620: 86-93. https://doi.org/10.1016/j.jcis.2022.03.138
|
Bai, M. X., Song, K. P., Sun, Y. X., et al., 2014. An Overview of Hydrogen Underground Storage Technology and Prospects in China. Journal of Petroleum Science and Engineering, 124: 132-136. https://doi.org/10.1016/j.petrol.2014.09.037
|
Ball, M., Wietschel, M., 2009. The Future of Hydrogen-Opportunities and Challenges. International Journal of Hydrogen Energy, 34(2): 615-627. https://doi.org/10.1016/j.ijhydene.2008.11.014
|
Bo, Z. K., Zeng, L. P., Chen, Y. Q., et al., 2021. Geochemical Reactions-Induced Hydrogen Loss during Underground Hydrogen Storage in Sandstone Reservoirs. International Journal of Hydrogen Energy, 46(38): 19998-20009. https://doi.org/10.1016/j.ijhydene.2021.03.116
|
Çelik, D., Yıldız, M., 2017. Investigation of Hydrogen Production Methods in Accordance with Green Chemistry Principles. International Journal of Hydrogen Energy, 42(36): 23395-23401. https://doi.org/10.1016/j.ijhydene.2017.03.104
|
Chouikhi, N., Cecilia, J. A., Vilarrasa-García, E., et al., 2019. CO2 Adsorption of Materials Synthesized from Clay Minerals: A Review. Minerals, 9(9): 514. https://doi.org/10.3390/min9090514
|
Conte, M., Iacobazzi, A., Ronchetti, M., et al., 2001. Hydrogen Economy for a Sustainable Development: State-of-the-Art and Technological Perspectives. Journal of Power Sources, 100(1-2): 171-187. https://doi.org/10.1016/s0378-7753(01)00893-x
|
Cozzarelli, I. M., Eganhouse, R. P., Baedecker, M. J., 1990. Transformation of Monoaromatic Hydrocarbons to Organic Acids in Anoxic Groundwater Environment. Environmental Geology and Water Sciences, 16(2): 135-141. https://doi.org/10.1007/BF01890379
|
da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., et al., 2017. Hydrogen: Trends, Production and Characterization of the Main Process Worldwide. International Journal of Hydrogen Energy, 42(4): 2018-2033. https://doi.org/10.1016/j.ijhydene.2016.08.219
|
Davoodabadi, A., Mahmoudi, A., Ghasemi, H., 2021. The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium. Science, 24(1): 101907. https://doi.org/10.1016/j.isci.2020.101907
|
Dogan, A. U., Dogan, M., Onal, M., et al., 2006. Baseline Studies of the Clay Minerals Society Source Clays: Specific Surface Area by the Brunauer Emmett Teller (BET) Method. Clays and Clay Minerals, 54(1): 62-66. https://doi.org/10.1346/ccmn.2006.0540108
|
Dopffel, N., Jansen, S., Gerritse, J., 2021. Microbial Side Effects of Underground Hydrogen Storage-Knowledge Gaps, Risks and Opportunities for Successful Implementation. International Journal of Hydrogen Energy, 46(12): 8594-8606. https://doi.org/10.1016/j.ijhydene.2020.12.058
|
Dusselier, M., Davis, M. E., 2018. Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11): 5265-5329. https://doi.org/10.1021/acs.chemrev.7b00738
|
Erdoğan Alver, B., 2018. Hydrogen Adsorption on Natural and Sulphuric Acid Treated Sepiolite and Bentonite. International Journal of Hydrogen Energy, 43(2): 831-838. https://doi.org/10.1016/j.ijhydene.2017.10.159
|
Esfandyari, H., Haghighat Hoseini, A., Shadizadeh, S. R., et al., 2021. Simultaneous Evaluation of Capillary Pressure and Wettability Alteration Based on the USBM and Imbibition Tests on Carbonate Minerals. Journal of Petroleum Science and Engineering, 200: 108285. https://doi.org/10.1016/j.petrol.2020.108285
|
Esfandyari, H., Shadizadeh, S. R., Esmaeilzadeh, F., et al., 2020. Implications of Anionic and Natural Surfactants to Measure Wettability Alteration in EOR Processes. Fuel, 278: 118392. https://doi.org/10.1016/j.fuel.2020.118392
|
Hao, Y. M., Ren, K., Cui, C. Z., et al., 2023. Optimization of Cushion Gas Types and Injection Production Parameters for Underground Hydrogen Storage in Aquifers. Energy Storage Science and Technology, 12(9): 2881-2887(in Chinese with English abstract).
|
Hashemi, L., Boon, M., Glerum, W., et al., 2022. A Comparative Study for H2-CH4 Mixture Wettability in Sandstone Porous Rocks Relevant to Underground Hydrogen Storage. Advances in Water Resources, 163: 104165. https://doi.org/10.1016/j.advwatres.2022.104165
|
He, X. X., Cheng, Y. P., Hu, B., et al., 2020. Effects of Coal Pore Structure on Methane‐Coal Sorption Hysteresis: An Experimental Investigation Based on Fractal Analysis and Hysteresis Evaluation. Fuel, 269: 117438. https://doi.org/10.1016/j.fuel.2020.117438
|
Higgs, S., Wang, Y. D., Sun, C. H., et al., 2022. In-Situ Hydrogen Wettability Characterisation for Underground Hydrogen Storage. International Journal of Hydrogen Energy, 47(26): 13062-13075. https://doi.org/10.1016/j.ijhydene.2022.02.022
|
Holladay, J. D., Hu, J., King, D. L., et al., 2009. An Overview of Hydrogen Production Technologies. Catalysis Today, 139(4): 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
|
Iglauer, S., Abid, H., Al-Yaseri, A., et al., 2021a. Hydrogen Adsorption on Sub-Bituminous Coal: Implications for Hydrogen Geo-Storage. Geophysical Research Letters, 48(10): e2021GL092976. https://doi.org/10.1029/2021gl092976
|
Iglauer, S., Ali, M., Keshavarz, A., 2021b. Hydrogen Wettability of Sandstone Reservoirs: Implications for Hydrogen Geo-Storage. Geophysical Research Letters, 48(3): e2020GL090814. https://doi.org/10.1029/2020gl090814
|
Jin, Z. J., Wang, L., 2022. Does Hydrogen Reservoir Exist in Nature? Earth Science, 47(10): 3858-3859 (in Chinese with English abstract).
|
Kanaani, M., Sedaee, B., Asadian-Pakfar, M., 2022. Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs. Journal of Energy Storage, 45: 103783. https://doi.org/10.1016/j.est.2021.103783
|
Keshavarz, A., Abid, H., Ali, M., et al., 2022. Hydrogen Diffusion in Coal: Implications for Hydrogen Geo‐Storage. Journal of Colloid and Interface Science, 608: 1457-1462. https://doi.org/10.1016/j.jcis.2021.10.050
|
Lankof, L., Urbańczyk, K., Tarkowski, R., 2022. Assessment of the Potential for Underground Hydrogen Storage in Salt Domes. Renewable and Sustainable Energy Reviews, 160: 112309. https://doi.org/10.1016/j.rser.2022.112309
|
Lewandowska-Śmierzchalska, J., Tarkowski, R., Uliasz-Misiak, B., 2018. Screening and Ranking Framework for Underground Hydrogen Storage Site Selection in Poland. International Journal of Hydrogen Energy, 43(9): 4401-4414. https://doi.org/10.1016/j.ijhydene.2018.01.089
|
Liu, C. W., Hong, W. M., Wang, D. C., et al., 2023. Research Progress of Underground Hydrogen Storage Technology. Oil & Gas Storage and Transportation, 42(8): 841-855 (in Chinese with English abstract).
|
Liu, N., Kovscek, A. R., Fernø, M. A., et al., 2023. Pore-Scale Study of Microbial Hydrogen Consumption and Wettability Alteration during Underground Hydrogen Storage. Frontiers in Energy Research, 11: 1124621. https://doi.org/10.3389/fenrg.2023.1124621
|
Lord, A. S., Kobos, P. H., Borns, D. J., 2014. Geologic Storage of Hydrogen: Scaling up to Meet City Transportation Demands. International Journal of Hydrogen Energy, 39(28): 15570-15582. https://doi.org/10.1016/j.ijhydene.2014.07.121
|
Lu, A. H., Huang, S. S., Liu, R., et al., 2006. Environmental Effects of Micro- and Ultra-Microchannel Structures of Natural Minerals. Acta Geologica Sinica, 80(2): 161-169. https://doi.org/10.1111/j.1755-6724.2006.tb00225.x
|
Luo, X. M., Jia, Z. H., Zhang, H. Y., 2023. Technical Challenges and Outlook of Underground Hydrogen Storage in Depleted Oil and Gas Reservoirs. Oil & Gas Storage and Transportation, 42(9): 1009-1023(in Chinese with English abstract).
|
Mu, S. C., 2005. Hydrogen Storage of Minerals. Geotectonica et Metallogenia, 29(1): 122-130(in Chinese with English abstract).
|
O'Keefe, J. M. K., Bechtel, A., Christanis, K., et al., 2013. On the Fundamental Difference between Coal Rank and Coal Type. International Journal of Coal Geology, 118: 58-87. https://doi.org/10.1016/j.coal.2013.08.007
|
Ortiz, L., Volckaert, G., Mallants, D., 2002. Gas Generation and Migration in Boom Clay, a Potential Host Rock Formation for Nuclear Waste Storage. Engineering Geology, 64(2-3): 287-296. https://doi.org/10.1016/s0013-7952(01)00107-7
|
Pan, B., Yin, X., Iglauer, S., 2021. Rock-Fluid Interfacial Tension at Subsurface Conditions: Implications for H2, CO2 and Natural Gas Geo-Storage. International Journal of Hydrogen Energy, 46(50): 25578-25585. https://doi.org/10.1016/j.ijhydene.2021.05.067
|
Panfilov, M., 2010. Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation. Transport in Porous Media, 85(3): 841-865. https://doi.org/10.1007/s11242-010-9595-7
|
Ranathunga, A. S., Perera, M. S. A., Ranjith, P. G., et al., 2017. Effect of Coal Rank on CO2 Adsorption Induced Coal Matrix Swelling with Different CO2 Properties and Reservoir Depths. Energy & Fuels, 31(5): 5297-5305. https://doi.org/10.1021/acs.energyfuels.6b03321
|
Ren, P., Qi, L., Wang, W., et al., 2023. Current Status and Development Trend of Utilization of Underground Salt Cavern Space. Oil-Gasfield Surface Engineering, 42(5): 1-8(in Chinese with English abstract).
|
Ren, W. X., Zhou, Y., Guo, J. C., et al., 2022. High-Pressure Adsorption Model for Middle-Deep and Deep Shale Gas. Earth Science, 47(5): 1865-1875 (in Chinese with English abstract).
|
Simon, J., Ferriz, A. M., Correas, L. C., 2015. HyUnder-Hydrogen Underground Storage at Large Scale: Case Study Spain. Energy Procedia, 73: 136-144. https://doi.org/10.1016/j.egypro.2015.07.661
|
Tarkowski, R., 2019. Underground Hydrogen Storage: Characteristics and Prospects. Renewable and Sustainable Energy Reviews, 105: 86-94. https://doi.org/10.1016/j.rser.2019.01.051
|
Tarkowski, R., Uliasz-Misiak, B., 2022. Towards Underground Hydrogen Storage: A Review of Barriers. Renewable and Sustainable Energy Reviews, 162: 112451. https://doi.org/10.1016/j.rser.2022.112451
|
Thaysen, E. M., Armitage, T., Slabon, L., et al., 2023. Microbial Risk Assessment for Underground Hydrogen Storage in Porous Rocks. Fuel, 352: 128852. https://doi.org/10.1016/j.fuel.2023.128852
|
Tu, J. W., Sheng, J. J., 2020. Effect of Pressure on Imbibition in Shale Oil Reservoirs with Wettability Considered. Energy & Fuels, 34(4): 4260-4272. https://doi.org/10.1021/acs.energyfuels.0c00034
|
Wal, K., Rutkowski, P., Stawiński, W., 2021. Application of Clay Minerals and Their Derivatives in Adsorption from Gaseous Phase. Applied Clay Science, 215: 106323. https://doi.org/10.1016/j.clay.2021.106323
|
Wang, L., Cheng, J. W., Jin, Z. J., et al., 2023a. High-Pressure Hydrogen Adsorption in Clay Minerals: Insights on Natural Hydrogen Exploration. Fuel, 344: 127919. https://doi.org/10.1016/j.fuel.2023.127919
|
Wang, L., Jin, Z. J., Chen, X., et al., 2023b. The Origin and Occurrence of Natural Hydrogen. Energies, 16(5): 2400. https://doi.org/10.3390/en16052400
|
Wang, L., Jin, Z. J., Huang, X. W., et al., 2024a. Hydrogen Adsorption in Porous Geological Materials: A Review. Sustainability, 16(5): 1958. https://doi.org/10.3390/su16051958
|
Wang, L., Jin, Z. J., Liu, Q. Y., et al., 2024b. The Occurrence Pattern of Natural Hydrogen in the Songliao Basin, P. R. China: Insights on Natural Hydrogen Exploration. International Journal of Hydrogen Energy, 50: 261-275. https://doi.org/10.1016/j.ijhydene.2023.08.237
|
Yan, W., Leng, G. Y., Li, Z. et al., 2023. Progress and Challenges of Underground Hydrogen Storage Technology. Acta Petrolei Sinica, 44(3): 556-568 (in Chinese with English abstract).
|
Yekta, A. E., Manceau, J. C., Gaboreau, S., et al., 2018. Determination of Hydrogen-Water Relative Permeability and Capillary Pressure in Sandstone: Application to Underground Hydrogen Injection in Sedimentary Formations. Transport in Porous Media, 122(2): 333-356. https://doi.org/10.1007/s11242-018-1004-7
|
Zeng, L. P., Vialle, S., Ennis-King, J., et al., 2023. Role of Geochemical Reactions on Caprock Integrity during Underground Hydrogen Storage. Journal of Energy Storage, 65: 107414. https://doi.org/10.1016/j.est.2023.107414
|
Ziemiański, P. P., Derkowski, A., 2022. Structural and Textural Control of High-Pressure Hydrogen Adsorption on Expandable and Non-Expandable Clay Minerals in Geologic Conditions. International Journal of Hydrogen Energy, 47(67): 28794-28805. https://doi.org/10.1016/j.ijhydene.2022.06.204
|
Zivar, D., Kumar, S., Foroozesh, J., 2021. Underground Hydrogen Storage: A Comprehensive Review. International Journal of Hydrogen Energy, 46(45): 23436-23462. https://doi.org/10.1016/j.ijhydene.2020.08.138
|
郝永卯, 任侃, 崔传智, 等, 2023. 含水层型地下储氢库垫层气类型优选及注采参数优化. 储能科学与技术, 12(9): 2881-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202309019.htm
|
金之钧, 王璐, 2022自然界有氢气藏吗? 地球科学, 47(10): 3858-3859. doi: 10.3799/dqkx.2022.840
|
刘翠伟, 洪伟民, 王多才, 等, 2023. 地下储氢技术研究进展. 油气储运, 42(8): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202308001.htm
|
罗小明, 贾子寒, 张宏阳, 2023. 枯竭油气藏地下储氢技术挑战及展望. 油气储运, 42(9): 1009-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202309006.htm
|
木士春, 2005. 矿物储氢研究. 大地构造与成矿学, 29(1): 122-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK20050100F.htm
|
任凭, 齐磊, 王玮, 等, 2023. 盐穴空间利用现状及发展趋势. 油气田地面工程, 42(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YQTD202305001.htm
|
任文希, 周玉, 郭建春, 等, 2022. 适用于中深层-深层页岩气的高压吸附模型. 地球科学, 47(5): 1865-1875. doi: 10.3799/dqkx.2022.014
|
闫伟, 冷光耀, 李中等, 2023. 氢能地下储存技术进展和挑战. 石油学报, 44(3): 556-568. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202303013.htm
|