• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 2
    Feb.  2025
    Turn off MathJax
    Article Contents
    Gao Ziqi, Lv Liqun, Zhou Guanyu, Huang Feng, Ma Chao, Tao Zhengxiang, Liang Jinhang, Wang Zhaoyin, 2025. New Reconstruction of Glacier Debris Flows Based on Tree Ring Response. Earth Science, 50(2): 752-762. doi: 10.3799/dqkx.2024.011
    Citation: Gao Ziqi, Lv Liqun, Zhou Guanyu, Huang Feng, Ma Chao, Tao Zhengxiang, Liang Jinhang, Wang Zhaoyin, 2025. New Reconstruction of Glacier Debris Flows Based on Tree Ring Response. Earth Science, 50(2): 752-762. doi: 10.3799/dqkx.2024.011

    New Reconstruction of Glacier Debris Flows Based on Tree Ring Response

    doi: 10.3799/dqkx.2024.011
    • Received Date: 2024-01-09
      Available Online: 2025-02-26
    • Publish Date: 2025-02-25
    • Glacial debris flows occur frequently in the Rangdaqu River Basin, posing a serious threat to local safety. Reconstructing the eruption history, flow range, and causes of debris flows can provide disaster prevention and mitigation parameters for engineering construction. Based on the cambial injury tissue and growth inhibition response of trees, this study provides a new calculation method for the evaluation threshold of growth inhibition in tree rings and the Wit index of debrisflow identification in tree rings, and reconstructs the outbreak time and flow range of debris flows from 1890 to 2021. The results show that: (1) the threshold for growth inhibition in the active zone of glaciers has been revised to 25%; (2) the calculation of the Wit index needs to exclude growth release factors, and the use of traumatic tissue and growth inhibition in tree rings can improve the accuracy of dating debris flow events.

       

    • loading
    • Corona, C., Lopez Saez, J., Stoffel, M., et al., 2012. How much of the Real Avalanche Activity Can Be Captured with Tree Rings? An Evaluation of Classic Dendrogeomorphic Approaches and Comparison with Historical Archives. Cold Regions Science and Technology, 74: 31-42. https://doi.org/10.1016/j.coldregions.2012.01.003
      Ding, M., Bai, S. B., Wang, J., et al., 2016. Basic Procedures of Using Tree Rings to Reconstruct the Ttime of Landslide Reactivation. Mountain Research, 34(5): 545-554(in Chinese with English abstract).
      Franco-Ramos, O., Stoffel, M., Ballesteros-Cánovas, J. A., 2019. Reconstruction of Debris-Flow Activity in a Temperate Mountain Forest Catchment of Central Mexico. Journal of Mountain Science, 16(9): 2096-2109. https://doi.org/10.1007/s11629-019-5496-6
      Huang, T., 2019. Study on the Response of Debris Flow Activity in the Upper Reaches of Minjiang River to Vertical Climate(Differentiation). Southwest University of Science and Technology, Mianyang (in Chinese with English abstract).
      Kogelnig-Mayer, B., Stoffel, M., Schneuwly-Bollschweiler, M., et al., 2011. Possibilities and Limitations of Dendrogeomorphic Time-Series Reconstructions on Sites Influenced by Debris Flows and Frequent Snow Avalanche Activity. Arctic, Antarctic, and Alpine Research, 43(4): 649-658. https://doi.org/10.1657/1938-4246-43.4.649
      Lai, Z. P., Yang, A. N., Cong, L., et al., 2021. A Review on the Dating Techniques for Mountain Hazards-Induced Sediments. Earth Science Frontiers, 28(2): 1-18(in Chinese with English abstract).
      Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and lts Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984(in Chinese with English abstract).
      Lundström, T., Stoffel, M., Stöckli, V., 2008. Fresh-Stem Bending of Silver Fir and Norway Spruce. Tree Physiology, 28(3): 355-366. https://doi.org/10.1093/treephys/28.3.355
      Lyu, L. Q., 2017. Research on the Initiation and Motion of Gully Debris Flows in Tibetan Plateau(Dissertation). Tsinghua University, Beijing, 3-5(in Chinese with English abstract).
      Lyu, L. Q., Wang, Z. Y., Meng, Z., 2022. Reconstruction of Debris Flow Disasters in Polong Gully Based on Dendrochronology. Earth Science, 49(1): 335-346(in Chinese with English abstract).
      Mayer, B., Stoffel, M., Bollschweiler, M., et al., 2010. Frequency and Spread of Debris Floods on Fans: a Dendrogeomorphic Case Study from a Dolomite Catchment in the Austrian Alps. Geomorphology, 118(1/2): 199-206. https://doi.org/10.1016/j.geomorph.2009.12.019
      Meng, Z., Lyu, L. Q., Yu, G. A., et al., 2022. Reconstruction of Glacial Debris Flow Disaster Based on Dendrochronology: A Case Study on Tianmo Gully, Tibet. Science Technology and Engineering, 22(32): 14124-14136(in Chinese with English abstract).
      Miao, X. Q., 2022. Research on the Movement Characteristics and Parameters of Debris Flow in Rangdaqu. Journal of Railway Engineering Society, 39(4): 20-25(in Chinese with English abstract).
      Peitzsch, E., Hendrikx, J., Stahle, D., et al., 2013. A Regional Spatiotemporal Analysis of Large Magnitude Snow Avalanches Using Tree Rings. Natural Hazards and Earth System Sciences, 21: 533-557. https://doi.org/10.5194/NHESS-21-533-2021
      Schneuwly, D. M., Stoffel, M., Dorren, L. K. A., et al., 2009. Three-Dimensional Analysis of the Anatomical Growth Response of European Conifers to Mechanical Disturbance. Tree Physiology, 29(10): 1247-1257. https://doi.org/10.1093/treephys/tpp056
      Schneuwly-Bollschweiler, M., Corona, C., Stoffel, M., 2013. How to Improve Dating Quality and Reduce Noise in Tree-Ring Based Debris-Flow Reconstructions. Quaternary Geochronology, 18: 110-118. https://doi.org/10.1016/j.quageo.2013.05.001
      Šilhán, K., 2021. A New Tree-Ring-Based Index for the Expression of Spatial Landslide Activity and the Assessment of Landslide Hazards. Geomatics, Natural Hazards and Risk, 12(1): 3409-3428. https://doi.org/10.1080/19475705.2021.2011790
      Stoffel, M., Bollschweiler, M., Hassler, G., 2006. Differentiating Past Events on a Cone Influenced by Debris‐Flow and Snow Avalanche Activity: a Dendrogeomorphological Approach. Earth Surface Processes and Landforms, 31(11): 1424-1437.
      Strunk, H., 1997. Dating of Geomorphological Processes Using Dendrogeomorphological Methods. CATENA, 31(1/2): 137-151. https://doi.org/10.1016/S0341-8162(97)00031-3
      Tie, Y. B., Malik, I., Owczarek, P., 2014. Dendrochronological Dating of Debris Flow Historical Events in High Mountain Area: Take Daozao Debris Flow as an Example. Mountain Research, 32(2): 226-232(in Chinese with English abstract).
      Vădean, R., Arghiuş, V., Pop, O., 2015. Dendrogeomorphic Reconstruction of Past Debris-Flood Activity along a Torrential Channel: an Example from Negoiul Basin (Apuseni Mountains, Romanian Carpathians). Zeitschrift Fur Geomorphologie, 59(3): 319-335. https://doi.org/10.1127/zfg/2014/0156
      Wang, K., 2016. Larixgmelini Tree-Ring Width Index with Responses to Climate Change In the West of Sichuan Subalpine Zone(Dissertation). Sichuan Agricultural University, Chengdu(in Chinese with English abstract).
      Wang, Z. L., Ma, C., Wu, J. L., et al., 2022. Debris Flow Event in Xiaoxitian Watershed of Miyun Based on Tree Ringreconstruction. Journal of Natural Disasters, 31(5): 183-192(in Chinese with English abstract).
      Wu, J. L., Ma, C., Wang, R., et al., 2021. Reconstruction of Torrent and Debris Flow Events Based Ondendro Geomorphology: A Case Study of Longtangou Basin in Miyun District, Beijing. Journal of Natural Disasters, 30(1): 183-190(in Chinese with English abstract).
      Zeng, X. Y., Zhang, J. J., Yang, D. X., et al., 2019. Characteristics and Geneses of Low Frequency Debris Flow along Parlongzangbo River Zone: Take Chaobulongba Gully as an Example. Science Technology and Engineering, (34): 103-107(in Chinese with English abstract).
      Zhang, J. S., Xie, H., Wang, X. D., et al., 2015. Debris-Flow of Jianmupuqu Ravine in Tibet. Journal of Catastrophology, 30(3): 99-103(in Chinese with English abstract).
      曾宪阳, 张佳佳, 杨东旭, 等, 2019. 帕隆藏布流域低频泥石流的成因机制分析——以倾多镇抄布隆巴泥石流为例. 科学技术与工程, 19(34): 103-107.
      丁苗, 白世彪, 王建, 等, 2016. 利用树木年轮重建滑坡复活时间的方法. 山地学报, 34(5): 545-554.
      黄涛, 2019. 岷江上游泥石流活动对气候垂直分异的响应研究(硕士学位论文). 绵阳: 西南科技大学.
      赖忠平, 杨安娜, 丛禄, 等, 2021. 山地灾害沉积物的测年综述. 地学前缘, 28(2): 1-18.
      李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
      吕立群, 2017. 青藏高原泥石流的形成运动过程研究(博士学位论文). 北京: 清华大学, 3-5.
      吕立群, 王兆印, 孟哲, 2024. 基于树木年代学的迫龙沟泥石流灾害历史重建. 地球科学, 49(1): 335-346. doi: 10.3799/dqkx.2022.142
      孟哲, 吕立群, 余国安, 等, 2022. 基于树木年代学的冰川型泥石流灾害历史重建方法——以西藏天摩沟为例. 科学技术与工程, 22(32): 14124-14136.
      苗晓岐, 2022. 瓤打曲泥石流运动特征及参数研究. 铁道工程学报, 39(4): 20-25.
      铁永波, Ireneusz Malik, Piotr Owczarek, 2014. 树木年代学在高寒山区泥石流历史事件重建中的应用——以磨西河流域倒灶沟为例. 山地学报, 32(2): 226-232.
      王珂, 2016. 川西亚高山落叶松径向生长与气候变化的关系(硕士学位论文). 成都: 四川农业大学.
      王志兰, 马超, 吴佳亮, 等, 2022. 基于树木年轮重建密云小西天流域泥石流事件. 自然灾害学报, 31(5): 183-192.
      吴佳亮, 马超, 王锐, 等, 2021. 基于树木地貌法重建山洪泥石流历史事件——以北京密云区龙潭沟流域为例. 自然灾害学报, 30(1): 183-190.
      张金山, 谢洪, 王小丹, 等, 2015. 西藏尖姆普曲泥石流. 灾害学, 30(3): 99-103.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(5)

      Article views (168) PDF downloads(17) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return