Citation: | Mei Jingtao, Wan Yongge, 2024. Co-Seismic Rupture Distribution of the Türkiye Double Earthquakes Estimated Based on Priori-Constraints and InSAR Data. Earth Science, 49(8): 2961-2978. doi: 10.3799/dqkx.2024.015 |
Chen, W. K., Rao, G., Kang, D. J., et al., 2023. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 Mw 7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2): 297-303. https://doi.org/10.1007/s12583-023-1316-6
|
Erdik, M., Tümsa, M. B. D., et al., 2023. A Preliminary Report on the February 6, 2023 Earthquakes in Türkiye. Temblor, 2: 3-8. https://doi.org/10.32858/temblor.297
|
Ergin, M., Aktar, M., Eyidoğan, H., 2004. Present-Day Seismicity and Seismotectonics of the Cilician Basin: Eastern Mediterranean Region of Turkey. Bulletin of the Seismological Society of America, 94(3): 930-939. https://doi.org/ 10.1785/0120020153.
|
Guo, Y. L., Li, H. F., Liang, P., et al., 2023. Preliminary Report of Coseismic Surface Rupture (part) of Türkiye's MW7.8 Earthquake by Remote Sensing Interpretation. Earthquake Research Advances, 4(1): 100219. https://doi.org/10.1016/j.eqrea.2023.100219
|
Güvercin, S. E., Karabulut, H., Konca, A. Ö., et al., 2022. Active Seismotectonics of the East Anatolian Fault. Geophysical Journal International, 230(1): 50-69. https://doi.org/10.1093/gji/ggac045
|
Jackson, D. D., Matsu'ura, M., 1985. A Bayesian Approach to Nonlinear Inversion. Journal of Geophysical Research: Solid Earth, 90(B1): 581-591. https://doi.org/10.1029/jb090ib01p00581
|
Jia, Z., Jin, Z. Y., Marchandon, M., et al., 2023. The Complex Dynamics of the 2023 Kahramanmaraş, Turkey, Mw 7.8-7.7 earthquake doublet. Science, 381(6661): 985-990. https://doi.org/ 10.1126/science.adi0685
|
Kikuchi, M., Kanamori, H., 1991. Inversion of Complex Body Waves-Ⅲ, Bulletin of the Seismological Society of America, 81: 2335-2350. https://doi.org/10.1785/BSSA0810062335
|
Li, Y. H., Cui. D. X., Hao, M., 2015. GPS-Constrained Inversion of Slip Rate on Major Active Faults in the Northeastern Margin of Tibet Plateau. Earth Science, 40(10): 1767-1780(in Chinese with English abstract).
|
Melgar, D., Taymaz, T., Ganas, A., et al., 2023. Sub- And Super-Shear Ruptures during the 2023 Mw 7.8 and Mw 7.6 Earthquake Doublet in SE Türkiye. Seismica, 2(3): 1-15. https://doi.org/10.26443/seismica.v2i3.387
|
Okada, Y., 1992. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 82(2): 1018-1040. https://doi.org/10.1785/bssa0820021018
|
Okuwaki, R., Yagi, Y., Taymaz, T., et al., 2023. Multi‐Scale Rupture Growth with Alternating Directions in a Complex Fault Network during the 2023 South‐Eastern Türkiye and Syria Earthquake Doublet. Geophysical Research Letters, 50(12): 1-15. https://doi.org/10.1029/2023gl103480
|
Reitman, N. G., Richard, W. B., William, D. B., et al., 2023. Preliminary Fault Rupture Mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes. USGS: Reston, VA, USA.
|
Shen, Z. K., Jackson, D. D., Feng, Y. J., et al., 1994. Postseismic Deformation Following the Landers Earthquake, California, 28 June 1992. Bulletin of the Seismological Society of America, 84(3): 780-791. https://doi.org/10.1785/bssa0840030780
|
Wan, Y. G., 2022. Method of Active Fault Geometry Determination by Clustering Nodal Planes of Focal Mechanisms Occurred on the Fault Belt and Its Application to the 2021 Yangbi Earthquake Sequence. Chinese Journal of Geophysics, 65(2): 637-648(in Chinese with English abstract).
|
Wan, Y. G., Shen, Z. K., Bürgmann, R., et al., 2017. Fault Geometry and Slip Distribution of the 2008 Mw 7.9 Wenchuan, China Earthquake, Inferred from GPS and InSAR Measurements. Geophysical Journal International, 208(2): 748-766. https://doi.org/10.1093/gji/ggw421
|
Wan, Y. G., Shen, Z. K., Lan, C. X., 2005. Study on Displacement Field Generated by Aftershocks in Landers Earthquake Fault Zone and Its Adjacent Areas. Acta Seismologica Sinica, 27(2): 139-146(in Chinese with English abstract).
|
Wan, Y. G., Shen, Z. K., Wang, M., et al., 2008. Coseismic Slip Distribution of the 2001 Kunlun Mountain Pass West Earthquake Constrained using GPS and InSAR Data. Chinese Journal of Geophysics, 51(4): 753-764(in Chinese with English abstract). doi: 10.1002/cjg2.1268
|
Wan, Y. G., Wan, Y. K., Jin, Z. T., et al., 2017. Rupture Distribution of the 1976 Tangshan Earthquake Sequence Inverted from Geodetic Data. Chinese Journal of Geophys, 60(9): 3378-3395(in Chinese with English abstract).
|
Wang, D., Sun, K., 2022. How the Big Data Seismology and AI Refine Rapid Determination of Source Parameters of Large Earthquakes? Earth Science, 47(10): 3915-3917 (in Chinese with English abstract).
|
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
|
Xu, J., Liu, C. L., Xiong, X., 2020. Source Process of the 24 January 2020 Mw 6.7 East Anatolian Fault Zone, Turkey, Earthquake. Seismological Research Letters, 91(6): 3120-3128. https://doi.org/10.1785/0220200124
|
李煜航, 崔笃信, 郝明, 2015. 利用GPS数据反演青藏高原东北缘主要活动断裂滑动速率. 地球科学, 40(10): 1767-1780. doi: 10.3799/dqkx.2015.158
|
万永革, 2022. 断裂带震源机制节面聚类确定断裂带产状方法及在2021年漾濞地震序列中的应用. 地球物理学报, 65(2): 637-648. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202202015.htm
|
万永革, 沈正康, 王敏, 等, 2008. 根据GPS和InSAR数据反演2001年昆仑山口西地震同震破裂分布. 地球物理学报, 51(4): 1074-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200804018.htm
|
万永革, 万永魁, 靳志同, 等, 2017. 用形变资料反演1976年唐山地震序列的破裂分布. 地球物理学报, 60(9): 3378-3395. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201709009.htm
|
万永革, 沈正康, 兰从欣, 2005. 兰德斯地震断层面及其附近余震产生的位移场研究. 地震学报, 27(2): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200502002.htm
|
王墩, 孙琨, 2022. 地震大数据和AI如何改进全球大震参数快速测定? 地球科学, 47(10): 3915-3917. doi: 10.3799/dqkx.2022.863
|