Citation: | Liu Heng, Liu Lei, Zhang Dexian, Kang Shisheng, Hu Tianyang, 2025. Magmatic Activity and Tectonic Significance in the Xiong'ershan Area during the Neoarchean to Early Paleoproterozoic. Earth Science, 50(2): 667-686. doi: 10.3799/dqkx.2024.019 |
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb. Chemical Geology, 192(1): 59-79. https://doi.org/10.1016/S0009-2541(2)00195-X
|
Bell, E. A., Boehnke, P., Harrison, M., 2016. Recovering the Primary Geochemistry of Jack Hills Zircons Through Quantitative Estimates of Chemical Alteration. Geochimica et Cosmochimica Acta, 191: 187-202. https://doi.org/10.1016/j.gca.2016.07.016
|
Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny: Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre-Nuna Supercontinent Reconstruction. Precambrian Research, 232: 44-69. https://doi.org/10.1016/j.precamres.2012.10.015
|
Bindeman, I., 2008. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Reviews in Mineralogy and Geochemistry, 69(1): 445-478. https://doi.org/10.2138/rmg.2008.69.12
|
Bindeman, I. N., Zakharov, D. O., Palandri, J., et al., 2018. Rapid Emergence of Subaerial Landmasses and Onset of a Modern Hydrologic Cycle 2.5 Billion Years Ago. Nature, 557(7706): 545-548. https://doi.org/10.1038/s41586-018-0131-1
|
Borisov, A. A., Shapkin, A. I., 1990. New Empirical Equation Relating Fe3+/Fe2+ in Magmas to Their Composition, Oxygen Fugacity, and Temperature. Geochemistry International, 27(1): 111-116.
|
Carmichael, I., Nicholls, J., 1967. Iron-Titanium Oxides and Oxygen Fugacities in Volcanic Rocks. Journal of Geophysical Research Atmospheres, 72(18). https://doi.org/10.1029/JZ072i018p04665.
|
Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033
|
Cui, Z., Xia, X. P., Huang, X. L., et al., 2022. Meso- to Neoarchean Geodynamic Transition of the North China Craton Indicated by H2O-in-Zircon for TTG Suite. Precambrian Research, 371: 106574. https://doi.org/10.1016/j.precamres.2022.106574
|
Diwu, C. R, 2007. Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China. Acta Petrologica Sinica, (2): 253-262 (in Chinese with English abstract).
|
Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Early Paleoproterozoic (2.45-2.20 Ga) Magmatic Activity During the Period of Global Magmatic Shutdown: Implications for the Crustal Evolution of the Southern North China Craton. Precambrian Research, 255: 627-640. https://doi.org/10.1016/j.precamres.2014.08.001
|
Diwu, C. R, 2018. The Composition and Evolution of the Taihua Complex in the Southern North China Craton. Acta Petrologica Sinica, 34(4): 999-1018 (in Chinese with English abstract).
|
Diwu, C. R, 2021. Crustal Growth and Evolution of Archean Continental Crust in the Southern North China Craton. Acta Petrologica Sinica, 37(2): 317-340 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.02.01
|
Dong, M. M., Wang, C. M., Santosh, M., et al., 2020. Geochronology and Petrogenesis of the Neoarchean-Paleoproterozoic Taihua Complex, NE China: Implications for the Evolution of the North China Craton. Precambrian Research, 346: 105792. https://doi.org/10.1016/j.precamres.2020.105792
|
Fedo, C. M., Sircombe, K. N., Rainbird, R. H., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53(1): 277-303. https://doi.org/10.2113/0530277
|
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy & Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
|
French, J. E., Heaman, L. M., 2010. Precise U-Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research, 183(3): 416-441. https://doi.org/10.1016/j.precamres.2010.05.003
|
Gasquet, D., Barbey, P., Adou, M., et al., 2003. Structure, Sr-Nd Isotope Geochemistry and Zircon U-Pb Geochronology of the Granitoids of the Dabakala Area (Côte d'Ivoire): Evidence for a 2.3 Ga Crustal Growth Event in the Palaeoproterozoic of West Africa? Precambrian Research, 127(4): 329-354. https://doi.org/10.1016/S0301-9268(3)00209-2
|
Ge, R. F., Simon, A. Wilde, Zhu, W. B., et al., 2023. Earth's Early Continental Crust Formed from Wet and Oxidizing Arc Magmas, Nature, 623: 334-349. https://doi.org/10.1038/s41586-023-06552-0
|
Grimes, C. B., Woode, J. L., Cheadle, M. J et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170: 46. https://doi.org/10.1007/s00410-015-1199-3
|
Gong, S., Chen, N., Wang, Q., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1): 152-166. https://doi.org/10.1016/j.gr.2011.07.011
|
Hartlaub, R. P., Heaman, L. M., Chacko, T., et al., 2007. Circa 2.3 Ga Magmatism of the Arrowsmith Orogeny, Uranium City Region, Western Churchill Craton, Canada. Journal of Geology, 115(2): 181-195. https://doi.org/10.1086/510641
|
Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen Across the Archean-Proterozoic Boundary. Precambrian Research, 233: 337-357. https://doi.org/10.1016/j.precamres.2013.05.016
|
Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiong'er in the Southern Segment of the Trans-North China Orogen: Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134-135: 236-252. https://doi.org/10.1016/j.lithos. 2012.01.004 doi: 10.1016/j.lithos.2012.01.004
|
Ishihara, S., 1977. The Magnetite-Series and Ilmenite-Series Granitic Rocks. Mining Geology, 27(145): 293-305. https://doi.org/10.11456/shigenchishitsu1951.27.293
|
Jagoutz, O., Klein, B., 2018. On the Importance of Crystallization-Differentiation for the Generation of SiO2-Rich Melts and the Compositional Build-Up of Arc (and Continental) Crust. American Journal of Science, 318(1): 29-63. https://doi.org/10.2475/01.2018.03
|
Jia, X. L, 2016. Research on the Taihua Complex in Xiaoqinling and Lushan Areas: Implications for the Evolution of the Crystalline Basement in the Southern North China Craton (Dissertation). Northwest University, Xian (in Chinese with English abstract).
|
Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2019. Late Neoarchean to Early Paleoproterozoic Tectonic Evolution of the Southern North China Craton: Evidence from Geochemistry, Zircon Geochronology, and Hf Isotopes of Felsic Gneisses from the Taihua Complex. Precambrian Research, 326: 222-239. https://doi.org/10.1016/j.precamres.2017.11.013
|
Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2020. Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 337: 105451. https://doi.org/10.1016/j.precamres.2019.105451
|
Kang, S. S., Liu, H., Hu, T. Y., et al., 2023. Petrogenesis and Geotectonic Significance of TTG Gneiss in Late Neoarchean Dengfeng Complex. Earth Science, 48(9): 3342-3359 (in Chinese with English abstract).
|
Lan, C., Zhou, Y., Wang, C., et al., 2017. Depositional Age and Protoliths of the Paleoproterozoic Upper Taihua Group in the Wuyang Area in the Southern Margin of the North China Craton: New Insights into Stratigraphic Subdivision and Tectonic Setting. Precambrian Research, 297: 77-100. https://doi.org/10.1016/j.precamres.2017.05.014
|
Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics Between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
|
Lee, C. T., 2016. Two-Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience. 9: 417-424. https://doi.org/10.1038/NGEO2707
|
Li, W. Y., Teng, F. Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867-6884. https://doi.org/10.1016/j.gca.2010.08.030
|
Li, W., Huberty, J. M., Beard, B. L., et al., 2013. Contrasting Behavior of Oxygen and Iron Isotopes in Banded Iron Formations Revealed by In Situ Isotopic Analysis. Earth and Planetary Science Letters, 384(): 132-143. https://doi.org/10.1016/j.epsl.2013.10.014
|
Li, Z. S, 2021. Late Precambrian Chronostratigraphic Framework and Tectonic Evolution of the Xiong'er Basin in Southern North China Craton. Acta Geologica Sinica, 95(11): 3234-3255 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.11.006
|
Liu, H., Wang, W., Cawood, P. A., et al., 2020. Synchronous Late Neoarchean Na- and K-Rich Granitoid Magmatism at an Active Continental Margin in the Eastern Liaoning Province of North China Craton. Lithos, 376/377(1). doi: 10.1016/j.lithos.2020.105770
|
Lu, G. M., Spencer, C. J., Tian, Y., et al., 2021. Significant Increase of Continental Freeboard During the Early Paleoproterozoic: Insights from Metasediment-Derived Granites. Geophysical Research Letters, 48(22). https://doi.org/10.1029/2021gl096049
|
Lu, G. M., Wang, W., Tian, Y., et al., 2021. Siderian Mafic-Intermediate Magmatism in the SW Yangtze Block, South China: Implications for Global 'Tectono-Magmatic Lull' During the Early Paleoproterozoic. Lithos, 398-399: 106306. https://doi: 10.1016/j.lithos.2021.106306
|
Lu, S., Zhao, G., Wang, H., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 160(1-2): 77-93. https://doi.org/10.1016/j.precamres.2007.04.017
|
McCammon, C., 2005. The Paradox of Mantle Redox. Science, 308(5723): 807-808. https://doi.org/ 10.1126/science. 1110532 doi: 10.1126/science.1110532
|
Miles, A. J., Graham, C. M., Hawkesworth, C. J., et al., 2014. Apatite: A New Redox Proxy for Silicic Magmas? Geochimica et Cosmochimica Acta, 132: 101-119. https://doi.org/10.1016/j.gca.2014.01.040
|
Palin, R. M., Santosh, M., Cao, W. T., et al., 2020. Secular Change and the Onset of Plate Tectonics on Earth. Earth-Science Reviews, 207: 103172. https://doi.org/10.1016/j.earscirev.2020.103172
|
Payne, J. L., Hand, M., Pearson, N. J., et al., 2015. Crustal Thickening and Clay: Controls on Oxygen Isotope Variation in Global Magmatism and Siliciclastic Sedimentary Rocks. Earth and Planetary Science Letters, 412: 70-76. https://doi.org/10.1016/j.epsl.2014.12.037
|
Qiu, J. T., Yu, X. Q., Santosh, M., et al., 2013. Geochronology and Magmatic Oxygen Fugacity of the Tongcun Molybdenum Deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545-556. https://doi.org/10.1007/s00126-013-0456-5
|
Rey, P. F., Coltice, N., 2008. Neoarchean Lithospheric Strengthening and the Coupling of Earth's Geochemical Reservoirs. Geology, 36(8): 635-638. https://doi.org/10.1130/g25031a.1
|
Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88. https://doi.org/10.1126/science.1148397
|
Sun, G., Liu, S., Cawood, P. A., et al., 2021. Thermal State and Evolving Geodynamic Regimes of the Meso- to Neoarchean North China Craton. Nature Communication, 12(1): 3888. https://doi.org/10.1038/s41467-021-24139-z
|
Sun, Q., Zhou, Y., Wang, W., et al., 2017. Formation and Evolution of the Paleoproterozoic Meta-Mafic and Associated Supracrustal Rocks from the Lushan Taihua Complex, Southern North China Craton: Insights from Zircon U-Pb Geochronology and Whole-Rock Geochemistry. Precambrian Research, 303: 428-444. https://doi.org/10.1016/j.precamres.2017.05.018
|
Sun, W. D, 2020. Oxygen Fugacity of Earth. Geochimica, 49(1): 1-20 (in Chinese with English abstract).
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London. Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Tang, M., Chu, X., Hao, J., et al., 2021. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876
|
Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480(7375): 79-82. https://doi.org/10.1038/nature10655
|
Trail, D., Bruce Watson, E., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032
|
Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005. 4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410-005-0025-8
|
Van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H., et al., 2007. Review: Secular Tectonic Evolution of Archean Continental Crust: Interplay Between Horizontal and Vertical Processes in the Formation of the Pilbara Craton, Australia. Terra Nova, 19(1): 1-38. https://doi.org/10.1111/j.1365-3121.2006.00723.x
|
Wan, Y. S., Dong, C. Y., Xie, H. Q., 2015. Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685-700 (in Chinese with English abstract).
|
Wang, J. Y., Long, X. P., Zhai, M. G., 2021. Early Paleoproterozoic magmatism and tectonic evolution in the southern section of North ChinaCraton. Journal of Northwest University(Philosophy and Social Sciences Edition), 51(6): 985-1006 (in Chinese with English abstract).
|
Wang, P., Mao, J., Ye, H., et al., 2022. Zircon Xenocryst Hf-O Isotopic Compositions in the Qiyugou Au Orefield: A Record of Paleoproterozoic Oceanic Slab Subduction in the Trans-North China Orogen. Precambrian Research, 368: 106499. https://doi.org/10.1016/j.precamres.2021
|
Wang, W., Cawood, P. A., Zhou, M. F., et al. 2017. Low-δ18O Rhyolites from the Malani Igneous Suite: A Positive Test for South China and NW India Linkage in Rodinia. Geophysical Research Letters, 44(20), 10, 298-210, 305. https://doi.org/10.1002/2017GL074717
|
Wang, X., Huang, X. L., Yang, F., 2021. Geochronology and Geochemistry of the Xiaoqinling Taihua Complex in the Southern Trans-North China Orogen: Implications for Magmatism During the Early Paleoproterozoic Global Tectono-Magmatic Shutdown. Lithos, 402-403. https://doi.org/10.1016/j.lithos.2021.106248
|
Windley, B. F., Kusky, T., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980
|
Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, (2): 185-220 (in Chinese with English abstract).
|
Xu, D. L., Peng, L. H., Deng, X., et al., 2013. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072-4087 (in Chinese with English abstract).
|
Yang, C. H, Du, L. L., Song, H. X., et al., 2018. Stratigraphic Division and Correlation of the Paleoproterozoic Strata in the North China Craton: A Review. Acta Petrologica Sinica, 34(4): 1019-1057 (in Chinese with English abstract).
|
Yang, X., Gaillard, F., Scaillet, B., 2014. A Relatively Reduced Hadean Continental Crust and Implications for the Early Atmosphere and Crustal Rheology. Earth and Planetary Science Letters, 393: 210-219. https://doi.org/10.1016/j.epsl.2014.02.056
|
Zeh, A., Gerdes, A., Barton, J. M., 2009. Archean Accretion and Crustal Evolution of the Kalahari Craton: The Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology. 50, 933-966. https://doi.org/10.1093/petrology/egp027
|
Zhang, S. B., Zheng, Y. F., 2013. Time and Space of Neoproterozoic Low δ18O Magmatic Rocks in South China. Science China Bullet, 58(23): 2344-2350(in Chinese with English abstract). doi: 10.1360/972013-655
|
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
|
Zhai, M. G, 2013. Secular Changes of Metallogenic Systems Linked with Continental Evolution of the North China Craton. Acta Petrologica Sinica, 29(5): 1759-1773 (in Chinese with English abstract).
|
Zhai, M. G, 2020. Review and Overview for the Frontier Hotspot: Early Continents and the Start of Plate Tectonics. Acta Petrologica Sinica, 36(8): 2249-2275 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.08.01
|
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural, and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1): 45-73. https://doi.org/10.1016/S0301-9268(0)00154-6
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres. 2004.10.002 doi: 10.1016/j.precamres.2004.10.002
|
Zhao, G. C., Zhang, G. W., 2021. Origin of Continents. Acta Geologica Sinica, 95(1): 1-19 (in Chinese with English abstract). doi: 10.1111/1755-6724.14621
|
Zhang R. Y., Zhang C. L., Diwu C. R., et al., 2012. Zircon U-Pb Geochronology, Geochemistry, and Its Geological Implications for the Precambrian Granitoids in Zhongtiao Mountain, Shanxi Province. Acta Petrologica Sinica, 28(11): 3559-3573 (in Chinese with English abstract).
|
Zheng, Y. F., Zhao, G., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
|
Zheng, Y. F., 2021. Convergent Plate Boundaries and Accretionary Wedges. In: Encyclopedia of Geology(2nd Edition). Alderton, D., Elias, S. A., eds., Academic Press, United Kingdom, 3: 770-787.
|
Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402-403: 106232. https://doi.org/10.1016/j.lithos.2021.106232
|
Zheng, Y. L., Zhou, Y. Y., Zhai, M. G., et al., 2022. Ca. 2.1 Ga Low-δ18O Gabbro-Diorite Association in Southern North China Craton: Implications for an Intraplate Rifting. Lithos, 430-431: 106858. https://doi.org/10.1016/j.lithos.2022.106858
|
Zhou, Y., Zhao, T., Zhai, M., et al., 2014. Petrogenesis of the Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton: Implications for Crustal Accretion and Transformation. Precambrian Research, 255: 514-537. https://doi.org/10.1016/j.precamres.2014.06.023
|
Zhou, Y. Y., Sun, Q. Y., Zhao, T. P., et al., 2021. Petrogenesis of the Early Paleoproterozoic Low-δ18O Potassic Granites in the Southern NCC and Its Possible Implications for No Confluence of Glaciations and Magmatic Shutdown at ca. 2.3 Ga. Precambrian Research, 361. https://doi.org/36110.1016/j.precamres.2021.106258
|
Zhou, Y. Y., Zhai, M. G., 2022. Mantle Plume-Triggered Rifting Closely Following Neoarchean Cratonization Revealed by 2.50-2.20 Ga Magmatism Across North China Craton. Earth-Science Reviews, 23010. https://doi.org/1016/j.earscirev.2022.104060
|
第五春荣, 孙勇, 林慈銮, 等, 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, (2): 253-262.
|
第五春荣, 刘祥, 孙勇, 2018. 华北克拉通南缘太华杂岩组成及演化. 岩石学报, 34(4): 999-1018.
|
第五春荣, 2021. 华北克拉通南部太古宙大陆地壳的生长和演化. 岩石学报, 37(2): 317-340.
|
康诗胜, 刘恒, 胡天杨, 等, 2023. 新太古代晚期登封地区TTG片麻岩成因及大地构造意义. 地球科学, 48(9): 3342-3359. doi: 10.3799/dqkx.2023.077
|
贾晓亮, 2016. 小秦岭和鲁山地区太华杂岩的研究: 对华北南缘基底演化的意义(博士学位论文). 西安: 西北大学.
|
李振生, 江柔柔, 马学婷, 等, 2021. 华北克拉通南部熊耳盆地晚前寒武纪年代地层格架和演化. 地质学报, 95(11): 3234-3255. doi: 10.3969/j.issn.0001-5717.2021.11.006
|
孙卫东, 2020. 地球氧逸度. 地球化学, 49(1): 1-20.
|
徐大良, 彭练红, 邓新, 等, 2023. 大别山南缘翁门杂岩中太古代-古元古代岩浆构造热事件的识别及其地质意义. 地球科学, 48(11): 4072-4087. doi: 10.3799/dqkx.2023.042
|
万渝生, 董春艳, 颉颃强, 等, 2015. 华北克拉通太古宙研究若干进展. 地球学报, 36(6): 685-700.
|
王敬宇, 龙晓平, 翟明国, 2021. 华北克拉通南缘古元古代早期岩浆作用及构造演化. 西北大学学报, 51(6): 985-1006.
|
吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, (2): 185-220.
|
杨崇辉, 杜利林, 宋会侠, 等, 2018. 华北克拉通古元古代地层划分与对比. 岩石学报, 34(4): 1019-1057.
|
张少兵, 郑永飞, 2013. 华南陆块新元古代低δ18O岩浆岩的时空分布. 科学通报, 58(23): 2344-2350.
|
翟明国, 2013. 华北前寒武纪成矿系统与重大地质事件的联系. 岩石学报, 29(5): 1759-1773.
|
翟明国, 赵磊, 祝禧艳, 等, 2020. 早期大陆与板块构造启动——前沿热点介绍与展望. 岩石学报, 36(8): 2249-2275.
|
张瑞英, 张成立, 第五春荣, 等, 2012. 中条山前寒武纪花岗岩地球化学、年代学及其地质意义. 岩石学报, 28(11) : 3559-3573.
|
赵国春, 张国伟, 2021. 大陆的起源. 地质学报, 95(1): 1-19.
|
![]() |
![]() |