Citation: | Guo Xue, Shen Jianxun, Liu Li, Huang Chengxiang, Chen Yan, Lin Honglei, Lin Wei, 2024. Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques. Earth Science, 49(7): 2526-2538. doi: 10.3799/dqkx.2024.027 |
Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA's Terra Platform. International Journal of Remote Sensing, 21(5): 847-859. https://doi.org/10.1080/014311600210326
|
Amao, A. O., Al-Otaibi, B., Al-Ramadan, K., 2022. High-Resolution X-Ray Diffraction Datasets: Carbonates. Data Brief, 42: 108204. https://doi.org/10.1016/j.dib.2022.108204
|
Anglés, A., Li, Y. L., 2017. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview. Journal of Geophysical Research: Planets, 122(5): 856-888. https://doi.org/10.1002/2017je005293
|
Bishop, J. L., Pieters, C. M., Edwards, J. O., 1994. Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite. Clays and Clay Minerals, 42(6): 702-716. https://doi.org/10.1346/ccmn.1994.0420606
|
Bosak, T., Moore, K. R., Gong, J., et al., 2021. Searching for Biosignatures in Sedimentary Rocks from Early Earth and Mars. Nature Reviews Earth & Environment, 2(7): 490-506. https://doi.org/10.1038/s43017-021-00169-5
|
Cardenas, B. T., Stacey, K., 2023. Landforms Associated with the Aspect-Controlled Exhumation of Crater-Filling Alluvial Strata on Mars. Geophysical Research Letters, 50(15): e2023GL103618. https://doi.org/10.1029/2023gl103618
|
Chen, K. Z., Bowler, J. M., 1986. Late Pleistocene Evolution of Salt Lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 54(1-4): 87-104. https://doi.org/10.1016/0031-0182(86)90119-7
|
Chen, Q., Zhao, Z. F., Zhou, J. X., et al., 2022a. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sensing, 14(5): 1253. https://doi.org/10.3390/rs14051253
|
Chen, Y., Shen, J. X., Liu, L., et al., 2022b. Preservation of Organic Matter in Aqueous Deposits and Soils across the Mars-Analog Qaidam Basin, NW China: Implications for Biosignature Detection on Mars. Journal of Geophysical Research: Planets, 127(12): e2022JE007418. https://doi.org/https://doi.org/10.1029/2022JE007418
|
Chung, F. H., 1974. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. Ⅰ. Matrix-Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography, 7(6): 519-525. https://doi.org/10.1107/s0021889874010375
|
Cloutis, E. A., Hawthorne, F. C., Mertzman, S. A., et al., 2006. Detection and Discrimination of Sulfate Minerals Using Reflectance Spectroscopy. Icarus, 184(1): 121-157. https://doi.org/10.1016/j.icarus.2006.04.003
|
Crowley, J. K., 1991. Visible and Near-Infrared (0.4-2.5 μm) Reflectance Spectra of Playa Evaporite Minerals. Journal of Geophysical Research: Solid Earth, 96(B10): 16231-16240. https://doi.org/10.1029/91jb01714
|
Crowley, J. K., Hook, S. J., 1996. Mapping Playa Evaporite Minerals and Associated Sediments in Death Valley, California, with Multispectral Thermal Infrared Images. Journal of Geophysical Research: Solid Earth, 101(B1): 643-660. https://doi.org/10.1029/95jb02813
|
Cui, Z. C., Jia, L. C., Li, L. N., et al., 2022. A Laser-Induced Breakdown Spectroscopy Experiment Platform for High-Degree Simulation of MarSCoDe In Situ Detection on Mars. Remote Sensing, 14(9): 1954. https://doi.org/10.3390/rs14091954
|
Des Marais, D. J., Nuth, J. A. Ⅲ, Allamandola, L. J., et al., 2008. The NASA Astrobiology Roadmap. Astrobiology, 8(4): 715-730. https://doi.org/10.1089/ast.2008.0819
|
Ehlmann, B. L., Edwards, C. S., 2014. Mineralogy of the Martian Surface. Annual Review of Earth and Planetary Sciences, 42: 291-315. https://doi.org/10.1146/annurev-earth-060313-055024
|
Gendrin, A., Mangold, N., Bibring, J. P., et al., 2005. Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View. Science, 307(5715): 1587-1591. https://doi.org/10.1126/science.1109087
|
He, Z. P., Xu, R., Li, C. L., et al., 2021. Mars Mineralogical Spectrometer (MMS) on the Tianwen-1 Mission. Space Science Reviews, 217(2): 27. https://doi.org/10.1007/s11214-021-00804-z
|
Horneck, G., Walter, N., Westall, F., et al., 2016. AstRoMap European Astrobiology Roadmap. Astrobiology, 16(3): 201-243. https://doi.org/10.1089/ast.2015.1441
|
Hu, B., Zhang, C. X., Wu, H. B., et al., 2019. Clay Mineralogy of an Eocene Fluvial-Lacustrine Sequence in Xining Basin, Northwest China, and Its Paleoclimatic Implications. Science China Earth Sciences, 62(3): 571-584. https://doi.org/10.1007/s11430-018-9282-8
|
Huang, Q., Han, F. Q., 2007. Salt Lake Evolution and Paleoclimate Fluctuation in Qaidam Basin. Science Press, Beijing (in Chinese).
|
Kong, F. J., Zheng, M. P., Hu, B., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: Ⅰ. Evolution and Environments. Astrobiology, 18(10): 1243-1253. https://doi.org/10.1089/ast.2018.1830
|
Langevin, Y., Poulet, F., Bibring, J. P., et al., 2005. Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express. Science, 307(5715): 1584-1586. https://doi.org/10.1126/science.1109091
|
Li, L. L., Dong, Z. B., Li, C., et al., 2018. Comparison of Yardang Morphology on the Earth and the Mars: Taking the Elysium Planitia and the Qaidam Basin for an Example. Journal of Desert Research, 38(4): 716-723 (in Chinese with English abstract).
|
Lin, H. L., Xu, R., Lin, Y. T., et al., 2023. In-Flight Calibration of Near-Infrared Reflectance Spectra Measured by the Zhurong Mars Rover. Earth and Space Science, 10(2): e2022EA002624. https://doi.org/10.1029/2022ea002624
|
Lin, W., Li, Y. L., Wang, G. H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese).
|
Lin, W., Shen, J. X., Pan, Y. X., 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113 (in Chinese with English abstract).
|
Liu, C. Q., Ling, Z. C., Wu, Z. C., et al., 2022a. Aqueous Alteration of the Vastitas Borealis Formation at the Tianwen-1 Landing Site. Communications Earth & Environment, 3(1): 280. https://doi.org/10.1038/s43247-022-00614-3
|
Liu, Y., Wu, X., Zhao, Y. S., et al., 2022b. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances, 8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555
|
Liu, Z. Y., Li, L. N., Xu, W. M., et al., 2023. Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment. Remote Sensing, 15(13): 3311. https://doi.org/10.3390/rs15133311
|
Martins, Z., Cottin, H., Kotler, J. M., et al., 2017. Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 209(1-4): 43-81. https://doi.org/10.1007/s11214-017-0369-1
|
McKeown, N. K., Bishop, J. L., Noe Dobrea, E. Z., et al., 2009. Characterization of Phyllosilicates Observed in the Central Mawrth Vallis Region, Mars, Their Potential Formational Processes, and Implications for Past Climate. Journal of Geophysical Research: Planets, 114(E2): E00D10. https://doi.org/10.1029/2008je003301
|
Ralchenko, Y., Kramida, A., 2020. Development of NIST Atomic Databases and Online Tools. Atoms, 8(3): 56. https://doi.org/10.3390/atoms8030056
|
Rieser, A. B., Bojar, A. V., Neubauer, F., et al., 2009. Monitoring Cenozoic Climate Evolution of Northeastern Tibet: Stable Isotope Constraints from the Western Qaidam Basin, China. International Journal of Earth Sciences, 98(5): 1063-1075. https://doi.org/10.1007/s00531-008-0304-5
|
Rohrmann, A., Heermance, R., Kapp, P., et al., 2013. Wind as the Primary Driver of Erosion in the Qaidam Basin, China. Earth and Planetary Science Letters, 374: 1-10. https://doi.org/10.1016/j.epsl.2013.03.011
|
Rotz, R., 2020. Geomorphic-Geologic Indicators of Zones of Hydrologic Flux in Drylands on Earth and Mars (Dissertation). University of Georgia, Georgia.
|
Shen, J., Zerkle, A. L., Stueeken, E., et al., 2019. Nitrates as a Potential N Supply for Microbial Ecosystems in a Hyperarid Mars Analog System. Life-Basel, 9(4): E79. https://doi.org/10.3390/life9040079
|
Shen, J. X., Chen, Y., Sun, Y., et al., 2022. Detection of Biosignatures in Terrestrial Mars Analogs: Strategical and Technical Assessments. Earth and Planetary Physics, 6: 431-450. https://doi.org/10.26464/epp2022042
|
Singh, M., Sarkar, A., 2021. Laser Induced Breakdown Spectroscopic Measurements of Oxygen to Metal (O/M) Ratio in Metal Oxides Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 179: 106106. https://doi.org/10.1016/j.sab.2021.106106
|
Sobron, P., Wang, A., Mayer, D. P., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region of Tibet Plateau: Ⅲ. Correlated Multiscale Surface Mineralogy and Geochemistry Survey. Astrobiology, 18(10): 1277-1304. https://doi.org/10.1089/ast.2017.1777
|
Sun, Y., Li, Y. L., Zhang, C. Q., et al., 2022. Weathering of Chlorite Illite Deposits in the Hyperarid Qaidam Basin: Implications to Post-Depositional Alteration on Martian Clay Minerals. Frontiers in Astronomy and Space Sciences, 9: 875547. https://doi.org/10.3389/fspas.2022.875547
|
Viviano-Beck, C. E., Seelos, F. P., Murchie, S. L., et al., 2014. Revised Crism Spectral Parameters and Summary Products Based on the Currently Detected Mineral Diversity on Mars. Journal of Geophysical Research: Planets, 119(6): 1403-1431. https://doi.org/10.1002/2014je004627
|
Wang, J., Wang, Y. J., Liu, Z. C., et al., 1999. Cenozoic Environmental Evolution of the Qaidam Basin and Its Implications for the Uplift of the Tibetan Plateau and the Drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1-2): 37-47. https://doi.org/10.1016/S0031-0182(99)00038-3
|
Wang, J., Xiao, L., Reiss, D., et al., 2018. Geological Features and Evolution of Yardangs in the Qaidam Basin, Tibetan Plateau (NW China): A Terrestrial Analogue for Mars. Journal of Geophysical Research: Planets, 123(9): 2336-2364. https://doi.org/10.1029/2018je005719
|
Wu, W. R., Wang, C., Liu, Y., et al., 2023. Frontier Scientific Questions in Deep Space Exploration. Chinese Science Bulletin, 68(6): 606-627 (in Chinese). doi: 10.1360/TB-2022-0667
|
Xia, W. C., Zhang, N., Yuan, X. P., et al., 2001. Cenozoic Qaidam Basin, China: A Stronger Tectonic Inversed, Extensional Rifted Basin. AAPG Bulletin, 85(4): 715-736. https://doi.org/https://doi.org/10.1306/8626C98D-173B-11D7-8645000102C1865D
|
Xiao, L., Huang, J., Kusky, T., et al., 2023. Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations. National Science Review, 10(9): nwad137. https://doi.org/10.1093/nsr/nwad137
|
Xiao, L., Wang, J., Dang, Y. N., et al., 2017. A New Terrestrial Analogue Site for Mars Research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 164: 84-101. https://doi.org/10.1016/j.earscirev.2016.11.003
|
Xu, W. M., Liu, X. F., Yan, Z. X., et al., 2021. The MarSCoDe Instrument Suite on the Mars Rover of China's Tianwen-1 Mission. Space Science Reviews, 217(5): 1-58. https://doi.org/10.1007/s11214-021-00836-5
|
Xue, D. S., Su, B. X., Zhang, D. P., et al., 2020. Quantitative Verification of 1 : 100 Diluted Fused Glass Beads for X-Ray Fluorescence Analysis of Geological Specimens. Journal of Analytical Atomic Spectrometry, 35(12): 2826-2833. https://doi.org/10.1039/d0ja00273a
|
Yin, A., Dang, Y. Q., Wang, L. C., et al., 2008. Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 1): The Southern Qilian Shan-Nan Shan Thrust Belt and Northern Qaidam Basin. Geological Society of America Bulletin, 120(7-8): 813-846. https://doi.org/10.1130/b26180.1
|
Yong, C. Z., Fang, Z. Y., Zhang, C. C., et al., 2023. Constraints on Water Activity at the Zhurong Landing Site in Utopia Planitia, Mars. Earth and Planetary Physics, 7(3): 356-370. https://doi.org/10.26464/epp2023036
|
Zhao, Y. S., Yu, J., Wei, G. F., et al., 2023. In Situ Analysis of Surface Composition and Meteorology at the Zhurong Landing Site on Mars. National Science Review, 10(6): nwad056. https://doi.org/10.1093/nsr/nwad056
|
黄麒, 韩凤清, 2007. 柴达木盆地盐湖演化与古气候波动. 北京: 科学出版社.
|
李露露, 董治宝, 李超, 等, 2018. 火星和地球雅丹形态学类比分析——以埃律西昂平原和柴达木盆地为例. 中国沙漠, 38(4): 716-723. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201804005.htm
|
林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202005009.htm
|
林巍, 申建勋, 潘永信, 2022. 关于我国天体生物学研究的思考. 地球科学, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883
|
吴伟仁, 王赤, 刘洋, 等, 2023. 深空探测之前沿科学问题探析. 科学通报, 68(6): 606-627. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202306005.htm
|