| Citation: | Chen Guoqing, Xu Qiang, Yang Xin, Sun Xiang, 2025. Fracture Propagation Characteristics and Catastrophic Modes of Fractured Rock in Alpine Region under Climate Change. Earth Science, 50(4): 1585-1598. doi: 10.3799/dqkx.2024.030 |
|
Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432
|
|
Christiansen, H. H., 2005. Thermal Regime of Ice-Wedge Cracking in Adventdalen, Svalbard. Permafrost and Periglacial Processes, 16(1): 87-98. https://doi.org/10.1002/ppp.523
|
|
Coe, J. A., Bessette-Kirton, E. K., Geertsema, M., 2018. Increasing Rock-Avalanche Size and Mobility in Glacier Bay National Park and Preserve, Alaska Detected from 1984 to 2016 Landsat Imagery. Landslides, 15(3): 393-407. https://doi.org/10.1007/s10346-017-0879-7
|
|
Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31: 508-527. https://doi.org/10.2747/0272-3646.31.6.508
|
|
Cui, P., Zhou, G. G. D., Zhu, X. H., et al., 2013. Scale Amplification of Natural Debris Flows Caused by Cascading Landslide Dam Failures. Geomorphology, 182: 173-189. https://doi.org/10.1016/j.geomorph.2012.11.009
|
|
Davidson, G. P., Nye, J. F., 1985. A Photoelastic Study of Ice Pressure in Rock Cracks. Cold Regions Science and Technology, 11(2): 141-153. https://doi.org/10.1016/0165-232X(85)90013-8
|
|
Fan, X. M., Yunus, A. P., Yang, Y. H., et al., 2022. Imminent Threat of Rock-Ice Avalanches in High Mountain Asia. Science of the Total Environment, 836: 155380. https://doi.org/10.1016/j.scitotenv.2022.155380
|
|
Huang, R. Q., 2008. Geodynamical Process and Stability Control of High Rock Slope Development. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1525-1544(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.08.002
|
|
Huang, R. Q., 2009. Mechanism of Landslide Disaster Triggered by Wenchuan Magnitude 8.0 Earthquake and Its Geomechanical Model. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.06.021
|
|
Huang, Y., 2012. Research on Freeze-Thaw Mechanical Behavior and Collapse Mechanism of Rock Mass in Alpine Mountainous Areas: Taking Tianshan Highway Slope as an Example. Chengdu University of Technology, Chengdu (in Chinese with English abstract).
|
|
IPCC (Intergovernmental Panel on Climate Change), 2022. Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
|
|
IPCC (Intergovernmental Panel on Climate Change), 2023. Climate Change 2021: The Physical Science Basis: Working Group Ⅰ Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
|
|
Ishikawa, M., Kurashige, Y., Hirakawa, K., 2004. Analysis of Crack Movements Observed in an Alpine Bedrock Cliff. Earth Surface Processes and Landforms, 29(7): 883-891. https://doi.org/10.1002/esp.1076
|
|
Jia, H. L., Xiang, W., Tan, L., et al., 2016. Theoretical Analysis and Experimental Verifications of Frost Damage Mechanism of Sandstone. Chinese Journal of Rock Mechanics and Engineering, 35(5): 879-895(in Chinese with English abstract).
|
|
Jiang, D. Y., Zhang, S. L., Chen, J., et al., 2019. Low Filed NMR and Acoustic Emission Probability Density Study of Freezing and Thawing Cycles Damage for Sandstone. Rock and Soil Mechanics, 40(2): 436-444(in Chinese with English abstract).
|
|
Lacelle, D., Brooker, A., Fraser, R. H., et al., 2015. Distribution and Growth of Thaw Slumps in the Richardson Mountains–Peel Plateau Region, Northwestern Canada. Geomorphology, 235: 40-51. https://doi.org/10.1016/j.geomorph.2015.01.024
|
|
Li, J. L., Zhu, L. Y., Zhou, K. P., et al., 2019. Damage Characteristics of Sandstone Pore Structure under Freeze-Thaw Cycles. Rock and Soil Mechanics, 40(9): 3524-3532(in Chinese with English abstract).
|
|
Li, Q. F., Zhu, S. F., 2008. Fracture Mechanics and Its Engineering Application (2nd ed. ). Harbin Engineering University Press, Harbin, 9-13(in Chinese).
|
|
Li, X. P., Lu, Y. N., Wang, Y. J., 2013. Research on Damage Model of Single Jointed Rock Masses under Coupling Action of Freeze-Thaw and Loading. Chinese Journal of Rock Mechanics and Engineering, 32(11): 2307-2315(in Chinese with English abstract).
|
|
Liu, H., Yang, G. S., Ren, J. X., 2007. Numerical Analysis Method for Temperature Field of Freezing-Thawing Shale Based on Digital Image Processing. Chinese Journal of Rock Mechanics and Engineering, 26(8): 1678-1683(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.08.019
|
|
Liu, Q. S., Kang, Y. S., Liu, X. Y., 2011. Analysis of Stress Field and Coupled Thermo-Mechanical Simulation of Single-Fracture Freezed Rock Masses. Chinese Journal of Rock Mechanics and Engineering, 30(2): 217-223(in Chinese with English abstract).
|
|
Lu, Y. N., Li, X. P., Xiao, J. S., 2014. Experimental Analysis on Mechanical Characteristic of Single Cracked Rock Mass under Freeze-Thaw Condition. Chinese Journal of Underground Space and Engineering, 10(3): 593-598, 649(in Chinese with English abstract).
|
|
Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583-596. https://doi.org/10.1007/s12583-022-1625-1
|
|
Lyu, Y., Ma, R. X., Wang, Z. P., et al., 2025. A Study on the Genetic Dynamics and Development Characteristics of Granitic Rock Avalanches in the Northern Qinling Mountains, China. Journal of Earth Science, 36(2): 737-749. https://doi.org/10.1007/s12583-024-0016-1
|
|
Moon, T., Oh, J., 2012. A Study of Optimal Rock-Cutting Conditions for Hard Rock TBM Using the Discrete Element Method. Rock Mechanics and Rock Engineering, 45(5): 837-849. https://doi.org/10.1007/s00603-011-0180-3
|
|
Mu, J. Q., Pei, X. J., Huang, R. Q., et al., 2017. Degradation Characteristics of Shear Strength of Joints in Three Rock Types Due to Cyclic Freezing and Thawing. Cold Regions Science and Technology, 138: 91-97. https://doi.org/10.1016/j.coldregions.2017.03.011
|
|
Mu, J. Q., 2013. Study on Damage and Deterioration Characteristics of Rock Mass and Its Disaster-Causing Effect under Cyclic Freeze-Thaw Conditions (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
|
|
Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
|
|
Qi, J. L., Ma, W., 2010. State-of-Art of Research on Mechanical Properties of Frozen Soils. Rock and Soil Mechanics, 31(1): 133-143(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.01.025
|
|
Qiao, C., 2023. Study on Damage Evolution Law and Disaster-Causing Mechanism of Rock Slope with Locked Segment Subjected to Freeze-Thaw Cycles (Dissertation). University of Science and Technology Beijing, Beijing(in Chinese with English abstract).
|
|
Ravanel, L., Deline, P., 2011. Climate Influence on Rockfalls in High-Alpine Steep Rockwalls: The North Side of the Aiguilles de Chamonix (Mont Blanc Massif) since the End of the 'Little Ice Age'. The Holocene, 21(2): 357-365. https://doi.org/10.1177/0959683610374887
|
|
Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455
|
|
Sun, Z. Q., Rao, Q. H., Wang, G. Y., 2002. Study on Determination of Shear Fracture Toughness(KIIc). Chinese Journal of Rock Mechanics and Engineering, 21(2): 199-203(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.02.009
|
|
Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931(in Chinese with English abstract).
|
|
Wen, L., Li, X. B., Chen, G. H., et al., 2014. The Effect of Freeze-Thaw Cycles on the Durability of Hard Rocks of Slope in Metal Mine. Mining and Metallurgical Engineering, 34(6): 10-13(in Chinese with English abstract). doi: 10.3969/j.issn.0253-6099.2014.06.003
|
|
Wen, L., Li, X. B., Yin, Y. B., et al., 2014. Study of Physico-Mechanical Properties of Granite Porphyry and Limestone in Slopes of Open-Pit Metal Mine under Freezing-Thawing Cycles and Their Application. Journal of Glaciology and Geocryology, 36(3): 632-639(in Chinese with English abstract).
|
|
Wu, G. J., Yao, T. D., Wang, W. C., et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292(in Chinese with English abstract).
|
|
Xu, G. M., Liu, Q. S., 2005. Analysis of Mechanism of Rock Failure Due to Freeze-Thaw Cycling and Mechanical Testing Study on Frozen-Thawed Rocks. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3076-3082(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.012
|
|
Xu, Z. X., Zhang, L. G., Jiang, L. W., et al., 2021. Engineering Geological Environment and Main Engineering Geological Problems of Ya'an-Linzhi Section of the Sichuan-Tibet Railway. Advanced Engineering Sciences, (3): 29-42(in Chinese with English abstract).
|
|
Yan, X. D., Liu, H. Y., Xing, C. F., et al., 2015. Constitutive Model Research on Freezing-Thawing Damage of Rock Based on Deformation and Propagation of Microcracks. Rock and Soil Mechanics, 36(12): 3489-3499(in Chinese with English abstract).
|
|
Yang, F., 2017. Preliminary Study on Classification and Identification Map of Large Landslides in Western Mountainous Areas (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
|
|
Yang, R., Fellin, M. G., Herman, F., et al., 2016. Spatial and Temporal Pattern of Erosion in the Three Rivers Region, Southeastern Tibet. Earth and Planetary Science Letters, 433: 10-20. https://doi.org/10.1016/j.epsl.2015.10.032
|
|
Yin, Y. P., 2000. Rapid Huge Landslide and Hazard Reduction of Yigong River in the Bomi, Tibet. Hydrogeology & Engineering Geology, 27(4): 8-11(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2000.04.003
|
|
Zhang, E. F., Yang, G. S., Liu, H., 2018. Experimental Study on Meso-Damage Evolution of Sandstone under Freeze-Thaw Cycles. Coal Engineering, 50(10): 50-55(in Chinese with English abstract).
|
|
Zhang, G. Z., Chen, G. Q, Wang, Z. W, et al., 2022. Development Characteristics and Rapid Evaluation of High-Steep Unstable Rock in Ya'an-Changdu Section of Sichuan-Tibet Railway. Advanced Engineering Sciences, 54(2): 1-11(in Chinese).
|
|
Zhang, H. P., Oskin, M., Jing, L. Z., et al., 2016. Pulsed Exhumation of Interior Eastern Tibet: Implications for Relief Generation Mechanisms and the Origin of High-Elevation Planation Surfaces. Earth and Planetary Science Letters, 449: 176-185. https://doi.org/10.1016/J.EPSL.2016.05.048
|
|
Zhang, J. Z., Miao, L. C., Yang, Z. F., 2008. Research on Rock Degradation and Deterioration Mechanisms and Mechanical Characteristics under Cyclic Freezing-Thawing. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1688-1694(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.08.020
|
|
Zhang, N., 2023. Study on Size Effect of Physical and Mechanical Characteristics of Intact Rock (Dissertation). Changan University, Xi'an(in Chinese with English abstract).
|
|
Zhang, P. S., Xu, D. Q., Li, T. H., et al., 2023. Experimental Study of Seepage Characteristics before and after Grouting and Mechanical Characteristics after Grouting of Fractured Sandstone. Rock and Soil Mechanics, 44(S1): 12-26(in Chinese with English abstract).
|
|
Zhang, S. J., Lai, Y. M., Su, X. M., et al., 2004. A Laboratory Study on the Damage Propagation of Rocks under Freeze-Thaw Cycle Condition. Chinese Journal of Rock Mechanics and Engineering, 23(24): 4105-4111(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.24.002
|
|
Zhang, Y. Z., Du, Y. L., Sun, B. C., et al., 2014. Roadbed Deformation of High-Speed Railway Due to Freezing-Thawing Process in Seasonally Frozen Regions. Chinese Journal of Rock Mechanics and Engineering, 33(12): 2546-2553(in Chinese with English abstract).
|
|
Zhu, Y. J., Ren, H., Wang, P., et al., 2022. Grouting Test and Reinforcement Mechanism Analysis of Rock with Single Penetrated Fracture Surface. Rock and Soil Mechanics, 43(12): 3221-3230(in Chinese with English abstract).
|
|
黄润秋, 2008. 岩石高边坡发育的动力过程及其稳定性控制. 岩石力学与工程学报, 27(8): 1525-1544. doi: 10.3321/j.issn:1000-6915.2008.08.002
|
|
黄润秋, 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式. 岩石力学与工程学报, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021
|
|
黄勇, 2012. 高寒山区岩体冻融力学行为及崩塌机制研究: 以天山公路边坡为例(博士学位论文). 成都: 成都理工大学.
|
|
贾海梁, 项伟, 谭龙, 等, 2016. 砂岩冻融损伤机制的理论分析和试验验证. 岩石力学与工程学报, 35(5): 879-895.
|
|
姜德义, 张水林, 陈结, 等, 2019. 砂岩循环冻融损伤的低场核磁共振与声发射概率密度研究. 岩土力学, 40(2): 436-444.
|
|
李杰林, 朱龙胤, 周科平, 等, 2019. 冻融作用下砂岩孔隙结构损伤特征研究. 岩土力学, 40(9): 3524-3532.
|
|
李庆芬, 朱世范, 2008. 断裂力学及其工程应用(2版). 哈尔滨: 哈尔滨工程大学出版社, 9-13.
|
|
李新平, 路亚妮, 王仰君, 2013. 冻融荷载耦合作用下单裂隙岩体损伤模型研究. 岩石力学与工程学报, 32(11): 2307-2315.
|
|
刘慧, 杨更社, 任建喜, 2007. 基于数字图像处理的冻融页岩温度场的数值分析方法. 岩石力学与工程学报, 26(8): 1678-1683. doi: 10.3321/j.issn:1000-6915.2007.08.019
|
|
刘泉声, 康永水, 刘小燕, 2011. 冻结岩体单裂隙应力场分析及热-力耦合模拟. 岩石力学与工程学报, 30(2): 217-223.
|
|
路亚妮, 李新平, 肖家双, 2014. 单裂隙岩体冻融力学特性试验分析. 地下空间与工程学报, 10(3): 593-598, 649.
|
|
母剑桥, 2013. 循环冻融条件下岩体损伤劣化特性及其致灾效应研究(硕士学位论文). 成都: 成都理工大学.
|
|
彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
|
|
齐吉琳, 马巍, 2010. 冻土的力学性质及研究现状. 岩土力学, 31(1): 133-143. doi: 10.3969/j.issn.1000-7598.2010.01.025
|
|
乔趁, 2023. 冻融循环作用下锁固型边坡损伤演化规律及致灾机制研究(博士学位论文). 北京: 北京科技大学.
|
|
孙宗颀, 饶秋华, 王桂尧, 2002. 剪切断裂韧度(KIIc)确定的研究. 岩石力学与工程学报, 21(2): 199-203. doi: 10.3321/j.issn:1000-6915.2002.02.009
|
|
汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260
|
|
闻磊, 李夕兵, 陈光辉, 等, 2014. 冻融循环作用下金属矿山边坡硬岩耐久性研究. 矿冶工程, 34(6): 10-13. doi: 10.3969/j.issn.0253-6099.2014.06.003
|
|
闻磊, 李夕兵, 尹彦波, 等, 2014. 冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究. 冰川冻土, 36(3): 632-639.
|
|
邬光剑, 姚檀栋, 王伟财, 等, 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292.
|
|
徐光苗, 刘泉声, 2005. 岩石冻融破坏机理分析及冻融力学试验研究. 岩石力学与工程学报, 24(17): 3076-3082. doi: 10.3321/j.issn:1000-6915.2005.17.012
|
|
徐正宣, 张利国, 蒋良文, 等, 2021. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题. 工程科学与技术, (3): 29-42.
|
|
阎锡东, 刘红岩, 邢闯锋, 等, 2015. 基于微裂隙变形与扩展的岩石冻融损伤本构模型研究. 岩土力学, 36(12): 3489-3499.
|
|
杨帆, 2017. 西部山区大型滑坡分类及识别图谱初步研究(硕士学位论文). 成都: 成都理工大学.
|
|
殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
|
|
张二锋, 杨更社, 刘慧, 2018. 冻融循环作用下砂岩细观损伤演化规律试验研究. 煤炭工程, 50(10): 50-55.
|
|
张广泽, 陈国庆, 王哲威, 等, 2022. 川藏铁路雅安至昌都段高陡危岩发育特征与快速评价. 工程科学与技术, 54(2): 1-11.
|
|
张继周, 缪林昌, 杨振峰, 2008. 冻融条件下岩石损伤劣化机制和力学特性研究. 岩石力学与工程学报, 27(8): 1688-1694. doi: 10.3321/j.issn:1000-6915.2008.08.020
|
|
张宁, 2023. 完整岩石物理力学特征的尺寸效应研究(博士学位论文). 西安: 长安大学.
|
|
张培森, 许大强, 李腾辉, 等, 2023. 裂隙砂岩注浆前后渗流特性及注浆后力学特性试验研究. 岩土力学, 44(增刊1): 12-26. doi: 10.16285/j.rsm.2022.0670
|
|
张淑娟, 赖远明, 苏新民, 等, 2004. 风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究. 岩石力学与工程学报, 23(24): 4105-4111.
|
|
张玉芝, 杜彦良, 孙宝臣, 等, 2014. 季节性冻土地区高速铁路路基冻融变形规律研究. 岩石力学与工程学报, 33(12): 2546-2553.
|
|
朱永建, 任恒, 王平, 等, 2022. 含单一贯通破裂面岩石注浆试验及加固机制分析. 岩土力学, 43(12): 3221-3230.
|