• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 4
    Apr.  2025
    Turn off MathJax
    Article Contents
    Chen Guoqing, Xu Qiang, Yang Xin, Sun Xiang, 2025. Fracture Propagation Characteristics and Catastrophic Modes of Fractured Rock in Alpine Region under Climate Change. Earth Science, 50(4): 1585-1598. doi: 10.3799/dqkx.2024.030
    Citation: Chen Guoqing, Xu Qiang, Yang Xin, Sun Xiang, 2025. Fracture Propagation Characteristics and Catastrophic Modes of Fractured Rock in Alpine Region under Climate Change. Earth Science, 50(4): 1585-1598. doi: 10.3799/dqkx.2024.030

    Fracture Propagation Characteristics and Catastrophic Modes of Fractured Rock in Alpine Region under Climate Change

    doi: 10.3799/dqkx.2024.030
    • Received Date: 2023-07-03
      Available Online: 2025-05-10
    • Publish Date: 2025-04-25
    • Under the influence of climate change, frost-weathered rock masses in high-altitude regions are prone to deterioration due to long-term freeze-thaw cycles. This deterioration can lead to sudden slope instability. To analyze the fracture mechanisms and corresponding hazard patterns under freeze-thaw cycles, it conducted field investigations on failure modes in high-altitude regions and freeze-thaw tests on fractured granite and quartz sandstone with varying crack lengths. By utilizing acoustic emission (AE) systems and strain testing systems, it analyzed the entire process of crack propagation at the end of the fissures, observing AE and microstrain curve variations. Based on experimental and theoretical discussions, it identified three main hazard patterns for fractured rock masses under freeze-thaw conditions: frost heaving, thaw subsidence, and freeze-thaw cycling. For the widely observed frost heaving pattern, the rock sample tests revealed that crack propagation occurred vertically downward from the crack ends, without deviation or secondary phenomena. While granite samples exhibited more pronounced initial crack propagation, quartz sandstone fissures tended to connect earlier. The AE count for granite showed an initial increase followed by a decrease, while quartz sandstone exhibited a steady count initially, which rapidly increased with more freeze-thaw cycles. Fracture mechanics analysis indicates that the expansion characteristics of fissured rock masses under freeze-thaw conditions are primarily influenced by rock type and crack length. Consequently, the formation of hazards in high-altitude regions is controlled by rock type and crack propagation. The research provides a theoretical basis for understanding the evolution of fractured rock masses and their hazard patterns in cold regions.

       

    • loading
    • Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432
      Christiansen, H. H., 2005. Thermal Regime of Ice-Wedge Cracking in Adventdalen, Svalbard. Permafrost and Periglacial Processes, 16(1): 87-98. https://doi.org/10.1002/ppp.523
      Coe, J. A., Bessette-Kirton, E. K., Geertsema, M., 2018. Increasing Rock-Avalanche Size and Mobility in Glacier Bay National Park and Preserve, Alaska Detected from 1984 to 2016 Landsat Imagery. Landslides, 15(3): 393-407. https://doi.org/10.1007/s10346-017-0879-7
      Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31: 508-527. https://doi.org/10.2747/0272-3646.31.6.508
      Cui, P., Zhou, G. G. D., Zhu, X. H., et al., 2013. Scale Amplification of Natural Debris Flows Caused by Cascading Landslide Dam Failures. Geomorphology, 182: 173-189. https://doi.org/10.1016/j.geomorph.2012.11.009
      Davidson, G. P., Nye, J. F., 1985. A Photoelastic Study of Ice Pressure in Rock Cracks. Cold Regions Science and Technology, 11(2): 141-153. https://doi.org/10.1016/0165-232X(85)90013-8
      Fan, X. M., Yunus, A. P., Yang, Y. H., et al., 2022. Imminent Threat of Rock-Ice Avalanches in High Mountain Asia. Science of the Total Environment, 836: 155380. https://doi.org/10.1016/j.scitotenv.2022.155380
      Huang, R. Q., 2008. Geodynamical Process and Stability Control of High Rock Slope Development. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1525-1544(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.08.002
      Huang, R. Q., 2009. Mechanism of Landslide Disaster Triggered by Wenchuan Magnitude 8.0 Earthquake and Its Geomechanical Model. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.06.021
      Huang, Y., 2012. Research on Freeze-Thaw Mechanical Behavior and Collapse Mechanism of Rock Mass in Alpine Mountainous Areas: Taking Tianshan Highway Slope as an Example. Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      IPCC (Intergovernmental Panel on Climate Change), 2022. Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
      IPCC (Intergovernmental Panel on Climate Change), 2023. Climate Change 2021: The Physical Science Basis: Working Group Ⅰ Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
      Ishikawa, M., Kurashige, Y., Hirakawa, K., 2004. Analysis of Crack Movements Observed in an Alpine Bedrock Cliff. Earth Surface Processes and Landforms, 29(7): 883-891. https://doi.org/10.1002/esp.1076
      Jia, H. L., Xiang, W., Tan, L., et al., 2016. Theoretical Analysis and Experimental Verifications of Frost Damage Mechanism of Sandstone. Chinese Journal of Rock Mechanics and Engineering, 35(5): 879-895(in Chinese with English abstract).
      Jiang, D. Y., Zhang, S. L., Chen, J., et al., 2019. Low Filed NMR and Acoustic Emission Probability Density Study of Freezing and Thawing Cycles Damage for Sandstone. Rock and Soil Mechanics, 40(2): 436-444(in Chinese with English abstract).
      Lacelle, D., Brooker, A., Fraser, R. H., et al., 2015. Distribution and Growth of Thaw Slumps in the Richardson Mountains–Peel Plateau Region, Northwestern Canada. Geomorphology, 235: 40-51. https://doi.org/10.1016/j.geomorph.2015.01.024
      Li, J. L., Zhu, L. Y., Zhou, K. P., et al., 2019. Damage Characteristics of Sandstone Pore Structure under Freeze-Thaw Cycles. Rock and Soil Mechanics, 40(9): 3524-3532(in Chinese with English abstract).
      Li, Q. F., Zhu, S. F., 2008. Fracture Mechanics and Its Engineering Application (2nd ed. ). Harbin Engineering University Press, Harbin, 9-13(in Chinese).
      Li, X. P., Lu, Y. N., Wang, Y. J., 2013. Research on Damage Model of Single Jointed Rock Masses under Coupling Action of Freeze-Thaw and Loading. Chinese Journal of Rock Mechanics and Engineering, 32(11): 2307-2315(in Chinese with English abstract).
      Liu, H., Yang, G. S., Ren, J. X., 2007. Numerical Analysis Method for Temperature Field of Freezing-Thawing Shale Based on Digital Image Processing. Chinese Journal of Rock Mechanics and Engineering, 26(8): 1678-1683(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.08.019
      Liu, Q. S., Kang, Y. S., Liu, X. Y., 2011. Analysis of Stress Field and Coupled Thermo-Mechanical Simulation of Single-Fracture Freezed Rock Masses. Chinese Journal of Rock Mechanics and Engineering, 30(2): 217-223(in Chinese with English abstract).
      Lu, Y. N., Li, X. P., Xiao, J. S., 2014. Experimental Analysis on Mechanical Characteristic of Single Cracked Rock Mass under Freeze-Thaw Condition. Chinese Journal of Underground Space and Engineering, 10(3): 593-598, 649(in Chinese with English abstract).
      Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583-596. https://doi.org/10.1007/s12583-022-1625-1
      Lyu, Y., Ma, R. X., Wang, Z. P., et al., 2025. A Study on the Genetic Dynamics and Development Characteristics of Granitic Rock Avalanches in the Northern Qinling Mountains, China. Journal of Earth Science, 36(2): 737-749. https://doi.org/10.1007/s12583-024-0016-1
      Moon, T., Oh, J., 2012. A Study of Optimal Rock-Cutting Conditions for Hard Rock TBM Using the Discrete Element Method. Rock Mechanics and Rock Engineering, 45(5): 837-849. https://doi.org/10.1007/s00603-011-0180-3
      Mu, J. Q., Pei, X. J., Huang, R. Q., et al., 2017. Degradation Characteristics of Shear Strength of Joints in Three Rock Types Due to Cyclic Freezing and Thawing. Cold Regions Science and Technology, 138: 91-97. https://doi.org/10.1016/j.coldregions.2017.03.011
      Mu, J. Q., 2013. Study on Damage and Deterioration Characteristics of Rock Mass and Its Disaster-Causing Effect under Cyclic Freeze-Thaw Conditions (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
      Qi, J. L., Ma, W., 2010. State-of-Art of Research on Mechanical Properties of Frozen Soils. Rock and Soil Mechanics, 31(1): 133-143(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.01.025
      Qiao, C., 2023. Study on Damage Evolution Law and Disaster-Causing Mechanism of Rock Slope with Locked Segment Subjected to Freeze-Thaw Cycles (Dissertation). University of Science and Technology Beijing, Beijing(in Chinese with English abstract).
      Ravanel, L., Deline, P., 2011. Climate Influence on Rockfalls in High-Alpine Steep Rockwalls: The North Side of the Aiguilles de Chamonix (Mont Blanc Massif) since the End of the 'Little Ice Age'. The Holocene, 21(2): 357-365. https://doi.org/10.1177/0959683610374887
      Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455
      Sun, Z. Q., Rao, Q. H., Wang, G. Y., 2002. Study on Determination of Shear Fracture Toughness(KIIc). Chinese Journal of Rock Mechanics and Engineering, 21(2): 199-203(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.02.009
      Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931(in Chinese with English abstract).
      Wen, L., Li, X. B., Chen, G. H., et al., 2014. The Effect of Freeze-Thaw Cycles on the Durability of Hard Rocks of Slope in Metal Mine. Mining and Metallurgical Engineering, 34(6): 10-13(in Chinese with English abstract). doi: 10.3969/j.issn.0253-6099.2014.06.003
      Wen, L., Li, X. B., Yin, Y. B., et al., 2014. Study of Physico-Mechanical Properties of Granite Porphyry and Limestone in Slopes of Open-Pit Metal Mine under Freezing-Thawing Cycles and Their Application. Journal of Glaciology and Geocryology, 36(3): 632-639(in Chinese with English abstract).
      Wu, G. J., Yao, T. D., Wang, W. C., et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292(in Chinese with English abstract).
      Xu, G. M., Liu, Q. S., 2005. Analysis of Mechanism of Rock Failure Due to Freeze-Thaw Cycling and Mechanical Testing Study on Frozen-Thawed Rocks. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3076-3082(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.012
      Xu, Z. X., Zhang, L. G., Jiang, L. W., et al., 2021. Engineering Geological Environment and Main Engineering Geological Problems of Ya'an-Linzhi Section of the Sichuan-Tibet Railway. Advanced Engineering Sciences, (3): 29-42(in Chinese with English abstract).
      Yan, X. D., Liu, H. Y., Xing, C. F., et al., 2015. Constitutive Model Research on Freezing-Thawing Damage of Rock Based on Deformation and Propagation of Microcracks. Rock and Soil Mechanics, 36(12): 3489-3499(in Chinese with English abstract).
      Yang, F., 2017. Preliminary Study on Classification and Identification Map of Large Landslides in Western Mountainous Areas (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Yang, R., Fellin, M. G., Herman, F., et al., 2016. Spatial and Temporal Pattern of Erosion in the Three Rivers Region, Southeastern Tibet. Earth and Planetary Science Letters, 433: 10-20. https://doi.org/10.1016/j.epsl.2015.10.032
      Yin, Y. P., 2000. Rapid Huge Landslide and Hazard Reduction of Yigong River in the Bomi, Tibet. Hydrogeology & Engineering Geology, 27(4): 8-11(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2000.04.003
      Zhang, E. F., Yang, G. S., Liu, H., 2018. Experimental Study on Meso-Damage Evolution of Sandstone under Freeze-Thaw Cycles. Coal Engineering, 50(10): 50-55(in Chinese with English abstract).
      Zhang, G. Z., Chen, G. Q, Wang, Z. W, et al., 2022. Development Characteristics and Rapid Evaluation of High-Steep Unstable Rock in Ya'an-Changdu Section of Sichuan-Tibet Railway. Advanced Engineering Sciences, 54(2): 1-11(in Chinese).
      Zhang, H. P., Oskin, M., Jing, L. Z., et al., 2016. Pulsed Exhumation of Interior Eastern Tibet: Implications for Relief Generation Mechanisms and the Origin of High-Elevation Planation Surfaces. Earth and Planetary Science Letters, 449: 176-185. https://doi.org/10.1016/J.EPSL.2016.05.048
      Zhang, J. Z., Miao, L. C., Yang, Z. F., 2008. Research on Rock Degradation and Deterioration Mechanisms and Mechanical Characteristics under Cyclic Freezing-Thawing. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1688-1694(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.08.020
      Zhang, N., 2023. Study on Size Effect of Physical and Mechanical Characteristics of Intact Rock (Dissertation). Changan University, Xi'an(in Chinese with English abstract).
      Zhang, P. S., Xu, D. Q., Li, T. H., et al., 2023. Experimental Study of Seepage Characteristics before and after Grouting and Mechanical Characteristics after Grouting of Fractured Sandstone. Rock and Soil Mechanics, 44(S1): 12-26(in Chinese with English abstract).
      Zhang, S. J., Lai, Y. M., Su, X. M., et al., 2004. A Laboratory Study on the Damage Propagation of Rocks under Freeze-Thaw Cycle Condition. Chinese Journal of Rock Mechanics and Engineering, 23(24): 4105-4111(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.24.002
      Zhang, Y. Z., Du, Y. L., Sun, B. C., et al., 2014. Roadbed Deformation of High-Speed Railway Due to Freezing-Thawing Process in Seasonally Frozen Regions. Chinese Journal of Rock Mechanics and Engineering, 33(12): 2546-2553(in Chinese with English abstract).
      Zhu, Y. J., Ren, H., Wang, P., et al., 2022. Grouting Test and Reinforcement Mechanism Analysis of Rock with Single Penetrated Fracture Surface. Rock and Soil Mechanics, 43(12): 3221-3230(in Chinese with English abstract).
      黄润秋, 2008. 岩石高边坡发育的动力过程及其稳定性控制. 岩石力学与工程学报, 27(8): 1525-1544. doi: 10.3321/j.issn:1000-6915.2008.08.002
      黄润秋, 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式. 岩石力学与工程学报, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021
      黄勇, 2012. 高寒山区岩体冻融力学行为及崩塌机制研究: 以天山公路边坡为例(博士学位论文). 成都: 成都理工大学.
      贾海梁, 项伟, 谭龙, 等, 2016. 砂岩冻融损伤机制的理论分析和试验验证. 岩石力学与工程学报, 35(5): 879-895.
      姜德义, 张水林, 陈结, 等, 2019. 砂岩循环冻融损伤的低场核磁共振与声发射概率密度研究. 岩土力学, 40(2): 436-444.
      李杰林, 朱龙胤, 周科平, 等, 2019. 冻融作用下砂岩孔隙结构损伤特征研究. 岩土力学, 40(9): 3524-3532.
      李庆芬, 朱世范, 2008. 断裂力学及其工程应用(2版). 哈尔滨: 哈尔滨工程大学出版社, 9-13.
      李新平, 路亚妮, 王仰君, 2013. 冻融荷载耦合作用下单裂隙岩体损伤模型研究. 岩石力学与工程学报, 32(11): 2307-2315.
      刘慧, 杨更社, 任建喜, 2007. 基于数字图像处理的冻融页岩温度场的数值分析方法. 岩石力学与工程学报, 26(8): 1678-1683. doi: 10.3321/j.issn:1000-6915.2007.08.019
      刘泉声, 康永水, 刘小燕, 2011. 冻结岩体单裂隙应力场分析及热-力耦合模拟. 岩石力学与工程学报, 30(2): 217-223.
      路亚妮, 李新平, 肖家双, 2014. 单裂隙岩体冻融力学特性试验分析. 地下空间与工程学报, 10(3): 593-598, 649.
      母剑桥, 2013. 循环冻融条件下岩体损伤劣化特性及其致灾效应研究(硕士学位论文). 成都: 成都理工大学.
      彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
      齐吉琳, 马巍, 2010. 冻土的力学性质及研究现状. 岩土力学, 31(1): 133-143. doi: 10.3969/j.issn.1000-7598.2010.01.025
      乔趁, 2023. 冻融循环作用下锁固型边坡损伤演化规律及致灾机制研究(博士学位论文). 北京: 北京科技大学.
      孙宗颀, 饶秋华, 王桂尧, 2002. 剪切断裂韧度(KIIc)确定的研究. 岩石力学与工程学报, 21(2): 199-203. doi: 10.3321/j.issn:1000-6915.2002.02.009
      汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260
      闻磊, 李夕兵, 陈光辉, 等, 2014. 冻融循环作用下金属矿山边坡硬岩耐久性研究. 矿冶工程, 34(6): 10-13. doi: 10.3969/j.issn.0253-6099.2014.06.003
      闻磊, 李夕兵, 尹彦波, 等, 2014. 冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究. 冰川冻土, 36(3): 632-639.
      邬光剑, 姚檀栋, 王伟财, 等, 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292.
      徐光苗, 刘泉声, 2005. 岩石冻融破坏机理分析及冻融力学试验研究. 岩石力学与工程学报, 24(17): 3076-3082. doi: 10.3321/j.issn:1000-6915.2005.17.012
      徐正宣, 张利国, 蒋良文, 等, 2021. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题. 工程科学与技术, (3): 29-42.
      阎锡东, 刘红岩, 邢闯锋, 等, 2015. 基于微裂隙变形与扩展的岩石冻融损伤本构模型研究. 岩土力学, 36(12): 3489-3499.
      杨帆, 2017. 西部山区大型滑坡分类及识别图谱初步研究(硕士学位论文). 成都: 成都理工大学.
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
      张二锋, 杨更社, 刘慧, 2018. 冻融循环作用下砂岩细观损伤演化规律试验研究. 煤炭工程, 50(10): 50-55.
      张广泽, 陈国庆, 王哲威, 等, 2022. 川藏铁路雅安至昌都段高陡危岩发育特征与快速评价. 工程科学与技术, 54(2): 1-11.
      张继周, 缪林昌, 杨振峰, 2008. 冻融条件下岩石损伤劣化机制和力学特性研究. 岩石力学与工程学报, 27(8): 1688-1694. doi: 10.3321/j.issn:1000-6915.2008.08.020
      张宁, 2023. 完整岩石物理力学特征的尺寸效应研究(博士学位论文). 西安: 长安大学.
      张培森, 许大强, 李腾辉, 等, 2023. 裂隙砂岩注浆前后渗流特性及注浆后力学特性试验研究. 岩土力学, 44(增刊1): 12-26. doi: 10.16285/j.rsm.2022.0670
      张淑娟, 赖远明, 苏新民, 等, 2004. 风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究. 岩石力学与工程学报, 23(24): 4105-4111.
      张玉芝, 杜彦良, 孙宝臣, 等, 2014. 季节性冻土地区高速铁路路基冻融变形规律研究. 岩石力学与工程学报, 33(12): 2546-2553.
      朱永建, 任恒, 王平, 等, 2022. 含单一贯通破裂面岩石注浆试验及加固机制分析. 岩土力学, 43(12): 3221-3230.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (513) PDF downloads(58) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return