• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Liu Hui, Gong Xun, 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036
    Citation: Liu Hui, Gong Xun, 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036

    Revisiting North Pacific Intermediate Water in the Modern Ocean

    doi: 10.3799/dqkx.2024.036
    • Received Date: 2024-01-22
    • Publish Date: 2024-08-25
    • North Pacific Intermediate Water (NPIW) is the largest water mass that originates in the North Pacific Ocean, and the process of NPIW formation acts as the only channel that links surface and the deep water in the North Pacific. Within the atmosphere-ocean coupled system, vertical mixture and ventilation process associated with NPIW circulation plays critical roles in changing marine carbon cycle and marine ecosystem, thus important to understand the global warming and its future projection. Physical oceanographic studies of NPIW have been performed mainly since the 1970s. Most of existing studies about NPIW rely on cruise section and CTD data, in combination of numerical simulation. In this work, we provide a review about the studies about the modern NPIW to constrain the problems and prospects: To characterize a tendency and variability across Seasonal, interannual and decadal time scales in the modern NPIW; To explore physics of NPIW in response to atmosphere and upper ocean processes; To explore stability of NPIW and its feedback to the global warming.

       

    • loading
    • Alexander, M. A., Bladé, I., Newman, M., et al., 2002. The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans. Journal of Climate, 15(16): 2205-2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
      Andreev, A. G., Kusakabe, M., 2001. Interdecadal Variability in Dissolved Oxygen in the Intermediate Water Layer of the Western Subarctic Gyre and Kuril Basin (Okhotsk Sea). Geophysical Research Letters, 28(12): 2453-2456. https://doi.org/10.1029/2000GL012688
      Auad, G., Kennett, J. P., Miller, A. J., 2003. North Pacific Intermediate Water Response to a Modern Climate Warming Shift. Journal of Geophysical Research: Oceans, 108(C11): 3349-3362. https://doi.org/10.1029/2003JC001987
      Bingham, F. M., Lukas, R., 1994. The Southward Intrusion of North Pacific Intermediate Water along the Mindanao Coast. Journal of Physical Oceanography, 24(1): 141-154. https://doi.org/10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2 doi: 10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2
      Bostock, H. C., Opdyke, B. N., Williams, M. J. M., 2010. Characterising the Intermediate Depth Waters of the Pacific Ocean Using δ13C and Other Geochemical Tracers. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 57(7): 847-859. https://doi.org/10.1016/j.dsr.2010.04.005
      Busecke, J. J. M., Resplandy, L., Ditkovsky, S. J., et al., 2022. Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World. AGU Advances, 3(6): e2021AV000470. https://doi.org/10.1029/2021AV000470
      Caesar, L., Rahmstorf, S., Robinson, A., et al., 2018. Observed Fingerprint of a Weakening Atlantic Ocean Overturning Circulation. Nature, 556(7700): 191-196. https://doi.org/10.1038/s41586-018-0006-5
      Davis, C. V., Sibert, E. C., Jacobs, P. H., et al., 2023. Intermediate Water Circulation Drives Distribution of Pliocene Oxygen Minimum Zones. Nature Communications, 14(1): 40-50. https://doi.org/10.1038/s41467-022-35083-x
      de Boyer Montégut, C., Madec, G., Fischer, A. S., et al., 2004. Mixed Layer Depth over the Global Ocean: An Examination of Profile Data and a Profile-Based Climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. https://doi.org/10.1029/2004JC002378
      Di Lorenzo, E., Xu, T., Zhao, Y., et al., 2023. Modes and Mechanisms of Pacific Decadal-Scale Variability. Annual Review of Marine Science, 15(1): 249-275. https://doi.org/10.1146/annurev-marine-040422-084555
      Ditlevsen, P., Ditlevsen, S., 2023. Warning of a Forthcoming Collapse of the Atlantic Meridional Overturning Circulation. Nature Communications, 14(1): 4254-4266. https://doi.org/10.1038/s41467-023-39810-w
      Dugdale, R. C., Wilkerson, F. P., Minas, H. J., 1995. The Role of a Silicate Pump in Driving New Production. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 42(5): 697-719. https://doi.org/10.1016/0967-0637(95)00015-X
      Dugdale, R. C., Wischmeyer, A. G., Wilkerson, F. P., et al., 2002. Meridional Asymmetry of Source Nutrients to the Equatorial Pacific Upwelling Ecosystem and Its Potential Impact on Ocean-Atmosphere CO2Flux; a Data and Modeling Approach. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(13): 2513-2531. https://doi.org/10.1016/S0967-0645(02)00046-2
      Emerson, S., Watanabe, Y. W., Ono, T., et al., 2004. Temporal Trends in Apparent Oxygen Utilization in the Upper Pycnocline of the North Pacific: 1980-2000. Journal of Oceanography, 60(1): 139-147. https://doi.org/10.1023/B:JOCE.0000038323.62130.a0
      Fujii, Y., Nakano, T., Usui, N., et al., 2013. Pathways of the North Pacific Intermediate Water Identified Through the Tangent Linear and Adjoint Models of an Ocean General Circulation Model. Journal of Geophysical Research: Oceans, 118(4): 2035-2051. https://doi.org/10.1002/jgrc.20094
      Galbraith, E. D., Jaccard, S. L., Pedersen, T. F., et al., 2007. Carbon Dioxide Release from the North Pacific Abyss during the Last Deglaciation. Nature, 449(7164): 890-893. https://doi.org/10.1038/nature06227
      Gladyshev, S., Talley, L., Kantakov, G., et al., 2003. Distribution, Formation, and Seasonal Variability of Okhotsk Sea Mode Water. Journal of Geophysical Research: Oceans, 108(C6): 3186-3203. https://doi.org/10.1029/2001JC000877
      Gong, X., Lembke-Jene, L., Lohmann, G., et al., 2019. Enhanced North Pacific Deep-Ocean Stratification by Stronger Intermediate Water Formation during Heinrich Stadial 1. Nature Communications, 10(1): 656-664. https://doi.org/10.1038/s41467-019-08606-2
      Hill, K. L., Weaver, A. J., Freeland, H. J., et al., 2003. Evidence of Change in the Sea of Okhotsk: Implications for the North Pacific. Atmosphere-Ocean, 41(1): 49-63. https://doi.org/10.3137/ao.410104
      Holte, J., Talley, L. D., Gilson, J., et al., 2017. An Argo Mixed Layer Climatology and Database. Geophysical Research Letters, 44(11): 5618-5626. https://doi.org/10.1002/2017GL073426
      Itoh, M., Ohshima, K. I., Wakatsuchi, M., 2003. Distribution and Formation of Okhotsk Sea Intermediate Water: An Analysis of Isopycnal Climatological Data. Journal of Geophysical Research: Oceans, 108(C8): 3258-3272. https://doi.org/10.1029/2002JC001590
      Joh, Y., Delworth, T. L., Wittenberg, A. T., et al., 2023. The Role of Upper-Ocean Variations of the Kuroshio-Oyashio Extension in Seasonal-to-Decadal Air-Sea Heat Flux Variability. npj Climate and Atmospheric Science, 6(1): 1-11. https://doi.org/10.1038/s41612-023-00453-9
      Katsumata, K., Ohshima, K., Kono, T., et al., 2004. Water Exchange and Tidal Currents through the Bussol' Strait Revealed by Direct Current Measurements. Journal of Geophysical Research: Oceans, 109(C9): C09S06. https://doi.org/10.1029/2003JC001864
      Kawabe, M., Fujio, S., 2010. Pacific Ocean Circulation Based on Observation. Journal of Oceanography, 66(3): 389-403. https://doi.org/10.1007/s10872-010-0034-8
      Kobayashi, T., 1999. Study of the Formation of North Pacific Intermediate Water by a General Circulation Model and the Particle-Tracking Method: 1. A Pitfall of General Circulation Model Studies. Journal of Geophysical Research: Oceans, 104(C3): 5423-5439. https://doi.org/10.1029/1998JC900084
      Kobayashi, T., 2000. Study of the Formation of North Pacific Intermediate Water by a General Circulation Model and the Particle-Tracking Method: 2. Formation Mechanism of Salinity Minimum from the View of the "Critical Gradient" of the Oyashio Mixing Ratio. Journal of Geophysical Research: Oceans, 105(C1): 1055-1069. https://doi.org/10.1029/1999JC900261
      Kouketsu, S., Fukasawa, M., Sasano, D., et al., 2010. Changes in Water Properties around North Pacific Intermediate Water between the 1980s, 1990s and 2000s. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(13): 1177-1187. https://doi.org/10.1016/j.dsr2.2009.12.007
      Kouketsu, S., Kaneko, I., Kawano, T., et al., 2007. Changes of North Pacific Intermediate Water Properties in the Subtropical Gyre. Geophysical Research Letters, 34(2): L02605. https://doi.org/10.1029/2006GL028499
      Kwon, E. Y., Deutsch, C., Xie, S. P., et al., 2016. The North Pacific Oxygen Uptake Rates over the Past Half Century. Journal of Climate, 29(1): 61-76. https://doi.org/10.1175/JCLI-D-14-00157.1
      Lan, J., Zhang, N., Wang, C., 2012. The Destiny of the North Pacific Intermediate Water in the South China Sea. Acta Oceanologica Sinica, 31(5): 41-45. https://doi.org/10.1007/s13131-012-0234-8
      Lembke-Jene, L., Tiedemann, R., Nürnberg, D., et al., 2018. Rapid Shift and Millennial-Scale Variations in Holocene North Pacific Intermediate Water Ventilation. Proceedings of the National Academy of Sciences, 115(21): 5365-5370. https://doi.org/10.1073/pnas.1714754115
      Levin, L. A., Bris, N. L., 2015. The Deep Ocean Under Climate Change. Science, 350(6262): 766-768. https://doi.org/10.1126/science.aad0126
      Li, C., Zhang, Z., Zhao, W., et al., 2017. A Statistical Study on the Subthermocline Submesoscale Eddies in the Northwestern Pacific Ocean Based on Argo Data. Journal of Geophysical Research: Oceans, 122(5): 3586-3598. https://doi.org/10.1002/2016JC012561
      Li, X., Yang, Y., Li, R., et al., 2020. Structure and Dynamics of the Pacific North Equatorial Subsurface Current. Scientific Reports, 10(1): 11758-11767. https://doi.org/10.1038/s41598-020-68605-y
      Li, Z., England, M. H., Groeskamp, S., 2023. Recent Acceleration in Global Ocean Heat Accumulation by Mode and Intermediate Waters. Nature Communications, 14(1): 6888-6901. https://doi.org/10.1038/s41467-023-42468-z
      Liao, F., Hoteit, I., 2022. A Comparative Study of the Argo-Era Ocean Heat Content Among Four Different Types of Data Sets. Earths Future, 10(9): e2021EF002532. https://doi.org/10.1029/2021EF002532
      Masujima, M., Yasuda, I., 2009. Distribution and Modification of North Pacific Intermediate Water around the Subarctic Frontal Zone East of 150°E. Journal of Physical Oceanography, 39(6): 1462-1474. https://doi.org/10.1175/2008JPO3919.1
      Nakamura, T., Awaji, T., 2004. Tidally Induced Diapycnal Mixing in the Kuril Straits and Its Role in Water Transformation and Transport: A Three-Dimensional Nonhydrostatic Model Experiment. Journal of Geophysical Research: Oceans, 109(C9): C09S07. https://doi.org/10.1029/2003JC001850
      Nakano, T., Kaneko, I., Endoh, M., et al., 2005. Interannual and Decadal Variabilities of NPIW Salinity Minimum Core Observed along JMA's Hydrographic Repeat Sections. Journal of Oceanography, 61(4): 681-697. https://doi.org/10.1007/s10872-005-0076-5
      Nakanowatari, T., Mitsudera, H., Motoi, T., et al., 2015a. Multidecadal-Scale Freshening at the Salinity Minimum in the Western Part of North Pacific: Importance of Wind-Driven Cross-Gyre Transport of Subarctic Water to the Subtropical Gyre. Journal of Physical Oceanography, 45(4): 988-1008. https://doi.org/10.1175/JPO-D-13-0274.1
      Nakanowatari, T., Nakamura, T., Uchimoto, K., et al., 2015b. Causes of the Multidecadal-Scale Warming of the Intermediate Water in the Okhotsk Sea and Western Subarctic North Pacific. Journal of Climate, 28(2): 714-736. https://doi.org/10.1175/JCLI-D-14-00172.1
      Nakanowatari, T., Ohshima, K. I., Wakatsuchi, M., 2007. Warming and Oxygen Decrease of Intermediate Water in the Northwestern North Pacific, originating from the Sea of Okhotsk, 1955-2004. Geophysical Research Letters, 34(4): L04602. https://doi.org/10.1029/2006GL028243
      Nishioka, J., Obata, H., Ogawa, H., et al., 2020. Subpolar Marginal Seas Fuel the North Pacific through the Intermediate Water at the Termination of the Global Ocean Circulation. Proceedings of the National Academy of Sciences, 117(23): 12665-12673. https://doi.org/10.1073/pnas.2000658117
      Parekh, P., Follows, M. J., Dutkiewicz, S., et al., 2006. Physical and Biological Regulation of the Soft Tissue Carbon Pump. Paleoceanography, 21(3): PA3001. https://doi.org/10.1029/2005PA001258
      Qiu, B., 1995. Why Is the Spreading of the North Pacific Intermediate Water Confined on Density Surfaces around σθ = 26.8? Journal of Physical Oceanography, 25(1): 168-180. https://doi.org/10.1175/1520-0485(1995)025<0168:WITSOT>2.0.CO;2 doi: 10.1175/1520-0485(1995)025<0168:WITSOT>2.0.CO;2
      Rae, J. W. B., Sarnthein, M., Foster, G. L., et al., 2014. Deep Water Formation in the North Pacific and Deglacial CO2Rise. Paleoceanography, 29(6): 645-667. https://doi.org/10.1002/2013PA002570
      Roemmich, D., Gilson, J., 2009. The 2004-2008 Mean and Annual Cycle of Temperature, Salinity, and Steric Height in the Global Ocean from the Argo Program. Progress in Oceanography, 82(2): 81-100. https://doi.org/10.1016/j.pocean.2009.03.004
      Sani, I. Y., Atmadipoera, A. S., Purwandana, A., et al., 2021. Transformation and Mixing of North Pacific Water Mass in Sangihe-Talaud in August 2019. IOP Conference Series: Earth and Environmental Science, 944(1): 012053. https://doi.org/10.1088/1755-1315/944/1/012053
      Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2003. Direct Observations of North Pacific Ventilation: Brine Rejection in the Okhotsk Sea. Science, 302(5652): 1952-1955. https://doi.org/10.1126/science.1088692
      Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2004a. Dense Water Formation on the Northwestern Shelf of the Okhotsk Sea: 1. Direct Observations of Brine Rejection. Journal of Geophysical Research: Oceans, 109(C9): C09S08. https://doi.org/10.1029/2003JC002196
      Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2004b. Dense Water Formation on the Northwestern Shelf of the Okhotsk Sea: 2. Quantifying the Transports. Journal of Geophysical Research: Oceans, 109(C9): C09S09. https://doi.org/10.1029/2003JC002197
      Shimizu, Y., Yasuda, I., Ito, S., 2001. Distribution and Circulation of the Coastal Oyashio Intrusion. Journal of Physical Oceanography, 31(6): 1561-1578. https://doi.org/10.1175/1520-0485(2001)031<1561:DACOTC>2.0.CO;2 doi: 10.1175/1520-0485(2001)031<1561:DACOTC>2.0.CO;2
      Sugimoto, S., 2022. Decreasing Wintertime Mixed-Layer Depth in the Northwestern North Pacific Subtropical Gyre. Geophysical Research Letters, 49(2): e2021GL095091. https://doi.org/10.1029/2021GL095091
      Sugimoto, S., Hanawa, K., 2011. Quasi-Decadal Modulations of North Pacific Intermediate Water Area in the Cross Section along the 137°E Meridian: Impact of the Aleutian Low Activity. Journal of Oceanography, 67(4): 519-531. https://doi.org/10.1007/s10872-011-0054-z
      Sun, C., Xu, J., Liu, Z., et al., 2008. Application of Argo Data in the Analysis of Water Masses in the Northwest Pacific Ocean. Marine Science Bulletin, 10(2), 1-13.
      Takano, Y., Ito, T., Deutsch, C., 2018. Projected Centennial Oxygen Trends and Their Attribution to Distinct Ocean Climate Forcings. Global Biogeochemical Cycles, 32(9): 1329-1349. https://doi.org/10.1029/2018GB005939
      Talley, L. D., 1991. An Okhotsk Sea Water Anomaly: Implications for Ventilation in the North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 38(1): S171-S190. https://doi.org/10.1016/S0198-0149(12)80009-4
      Talley, L. D., 1993. Distribution and Formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23(3): 517-537.https://doi.org/10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2 doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
      Talley, L. D., 1997. North Pacific Intermediate Water Transports in the Mixed Water Region. Journal of Physical Oceanography, 27(8): 1795-1803.https://doi.org/10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2 doi: 10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2
      Talley, L. D., 1999. Some Aspects of Ocean Heat Transport by the Shallow, Intermediate and Deep Overturning Circulations, In: Mechanisms of Global Climate Change at Millennial Time Scales. American Geophysical Union (AGU), 1-22. https://doi.org/10.1029/GM112p0001
      Talley, L. D., Yun, J. Y., 2001. The Role of Cabbeling and Double Diffusion in Setting the Density of the North Pacific Intermediate Water Salinity Minimum. Journal of Physical Oceanography, 31(6): 1538-1549.https://doi.org/10.1175/1520-0485(2001)031<1538:TROCAD>2.0.CO;2 doi: 10.1175/1520-0485(2001)031<1538:TROCAD>2.0.CO;2
      Tatebe, H., Yasuda, I., 2004. Oyashio Southward Intrusion and Cross-Gyre Transport Related to Diapycnal Upwelling in the Okhotsk Sea. Journal of Physical Oceanography, 34(10): 2327-2341.https://doi.org/10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2 doi: 10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2
      Tsunogai, S., Ono, T., Watanabe, S., 1993. Increase in Total Carbonate in the Western North Pacific Water and a Hypothesis on the Missing Sink of Anthropogenic Carbon. Journal of Oceanography, 49(3): 305-315. https://doi.org/10.1007/BF02269568
      Ueno, H., Yasuda, I., 2003. Intermediate Water Circulation in the North Pacific Subarctic and Northern Subtropical Regions. Journal of Geophysical Research: Oceans, 108(C11): 3348-3359. https://doi.org/10.1029/2002JC001372
      Van Scoy, K. A., Olson, D. B., Fine, R. A., 1991. Ventilation of North Pacific Intermediate Waters: The Role of the Alaskan Gyre. Journal of Geophysical Research: Oceans, 96(C9): 16801-16810. https://doi.org/10.1029/91JC01783
      Whitney, F. A., Freeland, H. J., Robert, M., 2007. Persistently Declining Oxygen Levels in the Interior Waters of the Eastern Subarctic Pacific. Progress in Oceanography, 75(2): 179-199. https://doi.org/10.1016/j.pocean.2007.08.007
      Yang, H., Lohmann, G., Wei, W., et al., 2016. Intensification and Poleward Shift of Subtropical Western Boundary Currents in a Warming Climate. Journal of Geophysical Research: Oceans, 121(7): 4928-4945. https://doi.org/10.1002/2015JC011513
      Yasuda, I., 1997. The Origin of the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 102(C1): 893-909. https://doi.org/10.1029/96JC02938
      Yasuda, I., 2004. North Pacific Intermediate Water: Progress in SAGE (SubArctic Gyre Experiment) and Related Projects. Journal of Oceanography, 60(2): 385-395. https://doi.org/10.1023/B:JOCE.0000038344.25081.42
      Yasuda, I., Hiroe, Y., Komatsu, K., et al., 2001. Hydrographic Structure and Transport of the Oyashio South of Hokkaido and the Formation of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 106(C4): 6931-6942. https://doi.org/10.1029/1999JC000154
      Yasuda, I., Kouketsu, S., Katsumata, K., et al., 2002. Influence of Okhotsk Sea Intermediate Water on the Oyashio and North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 107(C12): 3237-3247. https://doi.org/10.1029/2001JC001037
      Yoshinari, H., Yasuda, I., Ito, S., et al., 2001. Meridional Transport of the North Pacific Intermediate Water in the Kuroshio-Oyashio Interfrontal Zone. Geophysical Research Letters, 28(18): 3445-3448. https://doi.org/10.1029/2000GL012690
      You, Y. Z., 2003a. Implications of Cabbeling on the Formation and Transformation Mechanism of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 108(C5): 3134-3157. https://doi.org/10.1029/2001JC001285
      You, Y. Z., 2003b. The Pathway and Circulation of North Pacific Intermediate Water. Geophysical Research Letters, 30(24): 2291-2294. https://doi.org/10.1029/2003GL018561
      You, Y. Z., 2005. Double-Diffusive Fluxes of Salt and Heat in the Upper Layer of North Pacific Intermediate Water. Journal of Ocean University of China, 4(1): 1-7. https://doi.org/10.1007/s11802-005-0016-4
      You, Y. Z., 2010. Frontal Densification and Displacement: A Scenario of North Pacific Intermediate Water Formation. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(13): 1171-1176. https://doi.org/10.1016/j.dsr2.2009.12.006
      You, Y. Z., Suginohara, N., Fukasawa, M., et al., 2000. Roles of the Okhotsk Sea and Gulf of Alaska in Forming the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 105(C2): 3253-3280. https://doi.org/10.1029/1999JC900304
      Yuan, D. L., Yin, X. L., Li, X., et al., 2022. A Maluku Sea Intermediate Western Boundary Current Connecting Pacific Ocean Circulation to the Indonesian Throughflow. Nature Communications, 13(1): 2093-2100. https://doi.org/10.1038/s41467-022-29617-6
      Zang, N., Wang, F., Sprintall, J., 2020. The Intermediate Water in the Philippine Sea. Journal of Oceanology and Limnology, 38(5): 1343-1353. https://doi.org/10.1007/s00343-020-0035-4
      Zhou, Y. T., Gong, H. J., Zhou, F., 2022. Responses of Horizontally Expanding Oceanic Oxygen Minimum Zones to Climate Change Based on Observations. Geophysical Research Letters, 49(6): e2022GL097724. https://doi.org/10.1029/2022GL097724
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (1276) PDF downloads(200) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return