Citation: | Liu Hui, Gong Xun, 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036 |
Alexander, M. A., Bladé, I., Newman, M., et al., 2002. The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans. Journal of Climate, 15(16): 2205-2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
|
Andreev, A. G., Kusakabe, M., 2001. Interdecadal Variability in Dissolved Oxygen in the Intermediate Water Layer of the Western Subarctic Gyre and Kuril Basin (Okhotsk Sea). Geophysical Research Letters, 28(12): 2453-2456. https://doi.org/10.1029/2000GL012688
|
Auad, G., Kennett, J. P., Miller, A. J., 2003. North Pacific Intermediate Water Response to a Modern Climate Warming Shift. Journal of Geophysical Research: Oceans, 108(C11): 3349-3362. https://doi.org/10.1029/2003JC001987
|
Bingham, F. M., Lukas, R., 1994. The Southward Intrusion of North Pacific Intermediate Water along the Mindanao Coast. Journal of Physical Oceanography, 24(1): 141-154. https://doi.org/10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2 doi: 10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2
|
Bostock, H. C., Opdyke, B. N., Williams, M. J. M., 2010. Characterising the Intermediate Depth Waters of the Pacific Ocean Using δ13C and Other Geochemical Tracers. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 57(7): 847-859. https://doi.org/10.1016/j.dsr.2010.04.005
|
Busecke, J. J. M., Resplandy, L., Ditkovsky, S. J., et al., 2022. Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World. AGU Advances, 3(6): e2021AV000470. https://doi.org/10.1029/2021AV000470
|
Caesar, L., Rahmstorf, S., Robinson, A., et al., 2018. Observed Fingerprint of a Weakening Atlantic Ocean Overturning Circulation. Nature, 556(7700): 191-196. https://doi.org/10.1038/s41586-018-0006-5
|
Davis, C. V., Sibert, E. C., Jacobs, P. H., et al., 2023. Intermediate Water Circulation Drives Distribution of Pliocene Oxygen Minimum Zones. Nature Communications, 14(1): 40-50. https://doi.org/10.1038/s41467-022-35083-x
|
de Boyer Montégut, C., Madec, G., Fischer, A. S., et al., 2004. Mixed Layer Depth over the Global Ocean: An Examination of Profile Data and a Profile-Based Climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. https://doi.org/10.1029/2004JC002378
|
Di Lorenzo, E., Xu, T., Zhao, Y., et al., 2023. Modes and Mechanisms of Pacific Decadal-Scale Variability. Annual Review of Marine Science, 15(1): 249-275. https://doi.org/10.1146/annurev-marine-040422-084555
|
Ditlevsen, P., Ditlevsen, S., 2023. Warning of a Forthcoming Collapse of the Atlantic Meridional Overturning Circulation. Nature Communications, 14(1): 4254-4266. https://doi.org/10.1038/s41467-023-39810-w
|
Dugdale, R. C., Wilkerson, F. P., Minas, H. J., 1995. The Role of a Silicate Pump in Driving New Production. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 42(5): 697-719. https://doi.org/10.1016/0967-0637(95)00015-X
|
Dugdale, R. C., Wischmeyer, A. G., Wilkerson, F. P., et al., 2002. Meridional Asymmetry of Source Nutrients to the Equatorial Pacific Upwelling Ecosystem and Its Potential Impact on Ocean-Atmosphere CO2Flux; a Data and Modeling Approach. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(13): 2513-2531. https://doi.org/10.1016/S0967-0645(02)00046-2
|
Emerson, S., Watanabe, Y. W., Ono, T., et al., 2004. Temporal Trends in Apparent Oxygen Utilization in the Upper Pycnocline of the North Pacific: 1980-2000. Journal of Oceanography, 60(1): 139-147. https://doi.org/10.1023/B:JOCE.0000038323.62130.a0
|
Fujii, Y., Nakano, T., Usui, N., et al., 2013. Pathways of the North Pacific Intermediate Water Identified Through the Tangent Linear and Adjoint Models of an Ocean General Circulation Model. Journal of Geophysical Research: Oceans, 118(4): 2035-2051. https://doi.org/10.1002/jgrc.20094
|
Galbraith, E. D., Jaccard, S. L., Pedersen, T. F., et al., 2007. Carbon Dioxide Release from the North Pacific Abyss during the Last Deglaciation. Nature, 449(7164): 890-893. https://doi.org/10.1038/nature06227
|
Gladyshev, S., Talley, L., Kantakov, G., et al., 2003. Distribution, Formation, and Seasonal Variability of Okhotsk Sea Mode Water. Journal of Geophysical Research: Oceans, 108(C6): 3186-3203. https://doi.org/10.1029/2001JC000877
|
Gong, X., Lembke-Jene, L., Lohmann, G., et al., 2019. Enhanced North Pacific Deep-Ocean Stratification by Stronger Intermediate Water Formation during Heinrich Stadial 1. Nature Communications, 10(1): 656-664. https://doi.org/10.1038/s41467-019-08606-2
|
Hill, K. L., Weaver, A. J., Freeland, H. J., et al., 2003. Evidence of Change in the Sea of Okhotsk: Implications for the North Pacific. Atmosphere-Ocean, 41(1): 49-63. https://doi.org/10.3137/ao.410104
|
Holte, J., Talley, L. D., Gilson, J., et al., 2017. An Argo Mixed Layer Climatology and Database. Geophysical Research Letters, 44(11): 5618-5626. https://doi.org/10.1002/2017GL073426
|
Itoh, M., Ohshima, K. I., Wakatsuchi, M., 2003. Distribution and Formation of Okhotsk Sea Intermediate Water: An Analysis of Isopycnal Climatological Data. Journal of Geophysical Research: Oceans, 108(C8): 3258-3272. https://doi.org/10.1029/2002JC001590
|
Joh, Y., Delworth, T. L., Wittenberg, A. T., et al., 2023. The Role of Upper-Ocean Variations of the Kuroshio-Oyashio Extension in Seasonal-to-Decadal Air-Sea Heat Flux Variability. npj Climate and Atmospheric Science, 6(1): 1-11. https://doi.org/10.1038/s41612-023-00453-9
|
Katsumata, K., Ohshima, K., Kono, T., et al., 2004. Water Exchange and Tidal Currents through the Bussol' Strait Revealed by Direct Current Measurements. Journal of Geophysical Research: Oceans, 109(C9): C09S06. https://doi.org/10.1029/2003JC001864
|
Kawabe, M., Fujio, S., 2010. Pacific Ocean Circulation Based on Observation. Journal of Oceanography, 66(3): 389-403. https://doi.org/10.1007/s10872-010-0034-8
|
Kobayashi, T., 1999. Study of the Formation of North Pacific Intermediate Water by a General Circulation Model and the Particle-Tracking Method: 1. A Pitfall of General Circulation Model Studies. Journal of Geophysical Research: Oceans, 104(C3): 5423-5439. https://doi.org/10.1029/1998JC900084
|
Kobayashi, T., 2000. Study of the Formation of North Pacific Intermediate Water by a General Circulation Model and the Particle-Tracking Method: 2. Formation Mechanism of Salinity Minimum from the View of the "Critical Gradient" of the Oyashio Mixing Ratio. Journal of Geophysical Research: Oceans, 105(C1): 1055-1069. https://doi.org/10.1029/1999JC900261
|
Kouketsu, S., Fukasawa, M., Sasano, D., et al., 2010. Changes in Water Properties around North Pacific Intermediate Water between the 1980s, 1990s and 2000s. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(13): 1177-1187. https://doi.org/10.1016/j.dsr2.2009.12.007
|
Kouketsu, S., Kaneko, I., Kawano, T., et al., 2007. Changes of North Pacific Intermediate Water Properties in the Subtropical Gyre. Geophysical Research Letters, 34(2): L02605. https://doi.org/10.1029/2006GL028499
|
Kwon, E. Y., Deutsch, C., Xie, S. P., et al., 2016. The North Pacific Oxygen Uptake Rates over the Past Half Century. Journal of Climate, 29(1): 61-76. https://doi.org/10.1175/JCLI-D-14-00157.1
|
Lan, J., Zhang, N., Wang, C., 2012. The Destiny of the North Pacific Intermediate Water in the South China Sea. Acta Oceanologica Sinica, 31(5): 41-45. https://doi.org/10.1007/s13131-012-0234-8
|
Lembke-Jene, L., Tiedemann, R., Nürnberg, D., et al., 2018. Rapid Shift and Millennial-Scale Variations in Holocene North Pacific Intermediate Water Ventilation. Proceedings of the National Academy of Sciences, 115(21): 5365-5370. https://doi.org/10.1073/pnas.1714754115
|
Levin, L. A., Bris, N. L., 2015. The Deep Ocean Under Climate Change. Science, 350(6262): 766-768. https://doi.org/10.1126/science.aad0126
|
Li, C., Zhang, Z., Zhao, W., et al., 2017. A Statistical Study on the Subthermocline Submesoscale Eddies in the Northwestern Pacific Ocean Based on Argo Data. Journal of Geophysical Research: Oceans, 122(5): 3586-3598. https://doi.org/10.1002/2016JC012561
|
Li, X., Yang, Y., Li, R., et al., 2020. Structure and Dynamics of the Pacific North Equatorial Subsurface Current. Scientific Reports, 10(1): 11758-11767. https://doi.org/10.1038/s41598-020-68605-y
|
Li, Z., England, M. H., Groeskamp, S., 2023. Recent Acceleration in Global Ocean Heat Accumulation by Mode and Intermediate Waters. Nature Communications, 14(1): 6888-6901. https://doi.org/10.1038/s41467-023-42468-z
|
Liao, F., Hoteit, I., 2022. A Comparative Study of the Argo-Era Ocean Heat Content Among Four Different Types of Data Sets. Earths Future, 10(9): e2021EF002532. https://doi.org/10.1029/2021EF002532
|
Masujima, M., Yasuda, I., 2009. Distribution and Modification of North Pacific Intermediate Water around the Subarctic Frontal Zone East of 150°E. Journal of Physical Oceanography, 39(6): 1462-1474. https://doi.org/10.1175/2008JPO3919.1
|
Nakamura, T., Awaji, T., 2004. Tidally Induced Diapycnal Mixing in the Kuril Straits and Its Role in Water Transformation and Transport: A Three-Dimensional Nonhydrostatic Model Experiment. Journal of Geophysical Research: Oceans, 109(C9): C09S07. https://doi.org/10.1029/2003JC001850
|
Nakano, T., Kaneko, I., Endoh, M., et al., 2005. Interannual and Decadal Variabilities of NPIW Salinity Minimum Core Observed along JMA's Hydrographic Repeat Sections. Journal of Oceanography, 61(4): 681-697. https://doi.org/10.1007/s10872-005-0076-5
|
Nakanowatari, T., Mitsudera, H., Motoi, T., et al., 2015a. Multidecadal-Scale Freshening at the Salinity Minimum in the Western Part of North Pacific: Importance of Wind-Driven Cross-Gyre Transport of Subarctic Water to the Subtropical Gyre. Journal of Physical Oceanography, 45(4): 988-1008. https://doi.org/10.1175/JPO-D-13-0274.1
|
Nakanowatari, T., Nakamura, T., Uchimoto, K., et al., 2015b. Causes of the Multidecadal-Scale Warming of the Intermediate Water in the Okhotsk Sea and Western Subarctic North Pacific. Journal of Climate, 28(2): 714-736. https://doi.org/10.1175/JCLI-D-14-00172.1
|
Nakanowatari, T., Ohshima, K. I., Wakatsuchi, M., 2007. Warming and Oxygen Decrease of Intermediate Water in the Northwestern North Pacific, originating from the Sea of Okhotsk, 1955-2004. Geophysical Research Letters, 34(4): L04602. https://doi.org/10.1029/2006GL028243
|
Nishioka, J., Obata, H., Ogawa, H., et al., 2020. Subpolar Marginal Seas Fuel the North Pacific through the Intermediate Water at the Termination of the Global Ocean Circulation. Proceedings of the National Academy of Sciences, 117(23): 12665-12673. https://doi.org/10.1073/pnas.2000658117
|
Parekh, P., Follows, M. J., Dutkiewicz, S., et al., 2006. Physical and Biological Regulation of the Soft Tissue Carbon Pump. Paleoceanography, 21(3): PA3001. https://doi.org/10.1029/2005PA001258
|
Qiu, B., 1995. Why Is the Spreading of the North Pacific Intermediate Water Confined on Density Surfaces around σθ = 26.8? Journal of Physical Oceanography, 25(1): 168-180. https://doi.org/10.1175/1520-0485(1995)025<0168:WITSOT>2.0.CO;2 doi: 10.1175/1520-0485(1995)025<0168:WITSOT>2.0.CO;2
|
Rae, J. W. B., Sarnthein, M., Foster, G. L., et al., 2014. Deep Water Formation in the North Pacific and Deglacial CO2Rise. Paleoceanography, 29(6): 645-667. https://doi.org/10.1002/2013PA002570
|
Roemmich, D., Gilson, J., 2009. The 2004-2008 Mean and Annual Cycle of Temperature, Salinity, and Steric Height in the Global Ocean from the Argo Program. Progress in Oceanography, 82(2): 81-100. https://doi.org/10.1016/j.pocean.2009.03.004
|
Sani, I. Y., Atmadipoera, A. S., Purwandana, A., et al., 2021. Transformation and Mixing of North Pacific Water Mass in Sangihe-Talaud in August 2019. IOP Conference Series: Earth and Environmental Science, 944(1): 012053. https://doi.org/10.1088/1755-1315/944/1/012053
|
Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2003. Direct Observations of North Pacific Ventilation: Brine Rejection in the Okhotsk Sea. Science, 302(5652): 1952-1955. https://doi.org/10.1126/science.1088692
|
Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2004a. Dense Water Formation on the Northwestern Shelf of the Okhotsk Sea: 1. Direct Observations of Brine Rejection. Journal of Geophysical Research: Oceans, 109(C9): C09S08. https://doi.org/10.1029/2003JC002196
|
Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2004b. Dense Water Formation on the Northwestern Shelf of the Okhotsk Sea: 2. Quantifying the Transports. Journal of Geophysical Research: Oceans, 109(C9): C09S09. https://doi.org/10.1029/2003JC002197
|
Shimizu, Y., Yasuda, I., Ito, S., 2001. Distribution and Circulation of the Coastal Oyashio Intrusion. Journal of Physical Oceanography, 31(6): 1561-1578. https://doi.org/10.1175/1520-0485(2001)031<1561:DACOTC>2.0.CO;2 doi: 10.1175/1520-0485(2001)031<1561:DACOTC>2.0.CO;2
|
Sugimoto, S., 2022. Decreasing Wintertime Mixed-Layer Depth in the Northwestern North Pacific Subtropical Gyre. Geophysical Research Letters, 49(2): e2021GL095091. https://doi.org/10.1029/2021GL095091
|
Sugimoto, S., Hanawa, K., 2011. Quasi-Decadal Modulations of North Pacific Intermediate Water Area in the Cross Section along the 137°E Meridian: Impact of the Aleutian Low Activity. Journal of Oceanography, 67(4): 519-531. https://doi.org/10.1007/s10872-011-0054-z
|
Sun, C., Xu, J., Liu, Z., et al., 2008. Application of Argo Data in the Analysis of Water Masses in the Northwest Pacific Ocean. Marine Science Bulletin, 10(2), 1-13.
|
Takano, Y., Ito, T., Deutsch, C., 2018. Projected Centennial Oxygen Trends and Their Attribution to Distinct Ocean Climate Forcings. Global Biogeochemical Cycles, 32(9): 1329-1349. https://doi.org/10.1029/2018GB005939
|
Talley, L. D., 1991. An Okhotsk Sea Water Anomaly: Implications for Ventilation in the North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 38(1): S171-S190. https://doi.org/10.1016/S0198-0149(12)80009-4
|
Talley, L. D., 1993. Distribution and Formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23(3): 517-537.https://doi.org/10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2 doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
|
Talley, L. D., 1997. North Pacific Intermediate Water Transports in the Mixed Water Region. Journal of Physical Oceanography, 27(8): 1795-1803.https://doi.org/10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2 doi: 10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2
|
Talley, L. D., 1999. Some Aspects of Ocean Heat Transport by the Shallow, Intermediate and Deep Overturning Circulations, In: Mechanisms of Global Climate Change at Millennial Time Scales. American Geophysical Union (AGU), 1-22. https://doi.org/10.1029/GM112p0001
|
Talley, L. D., Yun, J. Y., 2001. The Role of Cabbeling and Double Diffusion in Setting the Density of the North Pacific Intermediate Water Salinity Minimum. Journal of Physical Oceanography, 31(6): 1538-1549.https://doi.org/10.1175/1520-0485(2001)031<1538:TROCAD>2.0.CO;2 doi: 10.1175/1520-0485(2001)031<1538:TROCAD>2.0.CO;2
|
Tatebe, H., Yasuda, I., 2004. Oyashio Southward Intrusion and Cross-Gyre Transport Related to Diapycnal Upwelling in the Okhotsk Sea. Journal of Physical Oceanography, 34(10): 2327-2341.https://doi.org/10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2 doi: 10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2
|
Tsunogai, S., Ono, T., Watanabe, S., 1993. Increase in Total Carbonate in the Western North Pacific Water and a Hypothesis on the Missing Sink of Anthropogenic Carbon. Journal of Oceanography, 49(3): 305-315. https://doi.org/10.1007/BF02269568
|
Ueno, H., Yasuda, I., 2003. Intermediate Water Circulation in the North Pacific Subarctic and Northern Subtropical Regions. Journal of Geophysical Research: Oceans, 108(C11): 3348-3359. https://doi.org/10.1029/2002JC001372
|
Van Scoy, K. A., Olson, D. B., Fine, R. A., 1991. Ventilation of North Pacific Intermediate Waters: The Role of the Alaskan Gyre. Journal of Geophysical Research: Oceans, 96(C9): 16801-16810. https://doi.org/10.1029/91JC01783
|
Whitney, F. A., Freeland, H. J., Robert, M., 2007. Persistently Declining Oxygen Levels in the Interior Waters of the Eastern Subarctic Pacific. Progress in Oceanography, 75(2): 179-199. https://doi.org/10.1016/j.pocean.2007.08.007
|
Yang, H., Lohmann, G., Wei, W., et al., 2016. Intensification and Poleward Shift of Subtropical Western Boundary Currents in a Warming Climate. Journal of Geophysical Research: Oceans, 121(7): 4928-4945. https://doi.org/10.1002/2015JC011513
|
Yasuda, I., 1997. The Origin of the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 102(C1): 893-909. https://doi.org/10.1029/96JC02938
|
Yasuda, I., 2004. North Pacific Intermediate Water: Progress in SAGE (SubArctic Gyre Experiment) and Related Projects. Journal of Oceanography, 60(2): 385-395. https://doi.org/10.1023/B:JOCE.0000038344.25081.42
|
Yasuda, I., Hiroe, Y., Komatsu, K., et al., 2001. Hydrographic Structure and Transport of the Oyashio South of Hokkaido and the Formation of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 106(C4): 6931-6942. https://doi.org/10.1029/1999JC000154
|
Yasuda, I., Kouketsu, S., Katsumata, K., et al., 2002. Influence of Okhotsk Sea Intermediate Water on the Oyashio and North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 107(C12): 3237-3247. https://doi.org/10.1029/2001JC001037
|
Yoshinari, H., Yasuda, I., Ito, S., et al., 2001. Meridional Transport of the North Pacific Intermediate Water in the Kuroshio-Oyashio Interfrontal Zone. Geophysical Research Letters, 28(18): 3445-3448. https://doi.org/10.1029/2000GL012690
|
You, Y. Z., 2003a. Implications of Cabbeling on the Formation and Transformation Mechanism of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 108(C5): 3134-3157. https://doi.org/10.1029/2001JC001285
|
You, Y. Z., 2003b. The Pathway and Circulation of North Pacific Intermediate Water. Geophysical Research Letters, 30(24): 2291-2294. https://doi.org/10.1029/2003GL018561
|
You, Y. Z., 2005. Double-Diffusive Fluxes of Salt and Heat in the Upper Layer of North Pacific Intermediate Water. Journal of Ocean University of China, 4(1): 1-7. https://doi.org/10.1007/s11802-005-0016-4
|
You, Y. Z., 2010. Frontal Densification and Displacement: A Scenario of North Pacific Intermediate Water Formation. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(13): 1171-1176. https://doi.org/10.1016/j.dsr2.2009.12.006
|
You, Y. Z., Suginohara, N., Fukasawa, M., et al., 2000. Roles of the Okhotsk Sea and Gulf of Alaska in Forming the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 105(C2): 3253-3280. https://doi.org/10.1029/1999JC900304
|
Yuan, D. L., Yin, X. L., Li, X., et al., 2022. A Maluku Sea Intermediate Western Boundary Current Connecting Pacific Ocean Circulation to the Indonesian Throughflow. Nature Communications, 13(1): 2093-2100. https://doi.org/10.1038/s41467-022-29617-6
|
Zang, N., Wang, F., Sprintall, J., 2020. The Intermediate Water in the Philippine Sea. Journal of Oceanology and Limnology, 38(5): 1343-1353. https://doi.org/10.1007/s00343-020-0035-4
|
Zhou, Y. T., Gong, H. J., Zhou, F., 2022. Responses of Horizontally Expanding Oceanic Oxygen Minimum Zones to Climate Change Based on Observations. Geophysical Research Letters, 49(6): e2022GL097724. https://doi.org/10.1029/2022GL097724
|