Citation: | Wang Daming, Li Xusheng, Wei Jialin, Cao Siqi, Wang Feicui, Tong Yunxiao, Yan Guoqiang, 2024. Identification of Rare Metal Dikes by Multi-Platform Synchronous Thermal Infrared Remote Sensing in Hutoushan Area. Earth Science, 49(6): 2242-2252. doi: 10.3799/dqkx.2024.039 |
Benson, T. R., Coble, M. A., Rytuba, J. J., et al., 2017. Lithium Enrichment in Intracontinental Rhyolite Magmas Leads to Li Deposits in Caldera Basins. Nature Communications, 8(1): 270. https://doi.org/10.1038/s41467-017-00234-y
|
Chakhmouradian, A. R., Smith, M. P., Kynicky, J., 2015. From "Strategic" Tungsten to "Green" Neodymium: A Century of Critical Metals at a Glance. Ore Geology Reviews, 64: 455-458. https://doi.org/10.1016/j.oregeorev.2014.06.008
|
Chakraborty, T., Lee, X. H., Ermida, S., et al., 2021. On the Land Emissivity Assumption and Landsat-Derived Surface Urban Heat Islands: A Global Analysis. Remote Sensing of Environment, 265: 112682. https://doi.org/10.1016/j.rse.2021.112682
|
Chao, J. Q., Zhao, Z. F., Lai, Z. B., et al., 2023. Detecting Geothermal Anomalies Using Landsat 8 Thermal Infrared Remote Sensing Data in the Ruili Basin, Southwest China. Environmental Science and Pollution Research International, 30(11): 32065-32082. https://doi.org/10.1007/s11356-022-24417-3
|
Dai, J. J., Wang, D. H., Wang, H. Y., 2019. A Review of the Three Type Rare Mineral Resources Survey in China Using Remote Sensing. Acta Geologica Sinica, 93(6): 1270-1278(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.008
|
Dai, J. J., Zhao, L. X., Jiang, Q., et al., 2020. Review of Thermal-Infrared Spectroscopy Applied in Geological Ore Exploration. Acta Geologica Sinica, 94(8): 2520-2533(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.08.026
|
Duan, J. B., Peng, P., Yang, Z., et al., 2019. Prediction of Polymetallic Metallogenic Favorable Area Based on ASTER Data. Remote Sensing for Land & Resources, 31(3): 193-200(in Chinese with English abstract).
|
Dyar, M. D., Gunter, M. E., Tasa, D., 2007. Mineralogy and Optical Mineralogy. Mineralogical Society of America Chantilly, VA.
|
E, A. Q., 2018. Ore Characteristics and Ore Controlling Factors of Rare Metal Deposits of Typical Granite Type in the Middle of the Inner Mongolia Autonomous Region. Nonferrous Metals Science and Engineering, 9(2): 62-69(in Chinese with English abstract).
|
Fan, Y. H., Wang, H., Yang, X. K., et al., 2018. Application of High-Resolution Remote Sensing Technology to the Prospecting for Rare Metal Mineralization Belt. Remote Sensing for Land & Resources, 30(1): 128-134(in Chinese with English abstract).
|
Galve, J. M., Sánchez, J. M., García-Santos, V., et al., 2022. Assessment of Land Surface Temperature Estimates from Landsat 8-TIRS in a High-Contrast Semiarid Agroecosystem. Algorithms Intercomparison. Remote Sensing, 14(8): 1843. https://doi.org/10.3390/rs14081843
|
Gao, Y., Sun, Y., Zhao, Z., et al., 2017. 40Ar-39Ar Dating of Muscovite from the Zhaojinggou Nb-Ta Polymetallic Deposit in Wuchuan County of Inner Mongolia and Its Geological Implications. Rock and Mineral Analysis, 36(5): 551-558(in Chinese with English abstract).
|
Gao, Y. B., Bagas, L., Li, K., et al., 2020. Newly Discovered Triassic Lithium Deposits in the Dahongliutan Area, Northwest China: A Case Study for the Detection of Lithium-Bearing Pegmatite Deposits in Rugged Terrains Using Remote-Sensing Data and Images. Frontiers in Earth Science, 8: 591966. https://doi.org/10.3389/feart.2020.591966
|
Gao, Y. N., Zhang, W. C., 2008. Comparison Test and Research Progress of Topographic Correction on Remotely Sensed Data. Geographical Research, 27(2): 467-477, 484(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0585.2008.02.024
|
He, J. L., Zhao, W., Li, A. N., et al., 2019. The Impact of the Terrain Effect on Land Surface Temperature Variation Based on Landsat-8 Observations in Mountainous Areas. International Journal of Remote Sensing, 40(5-6): 1808-1827. https://doi.org/10.1080/01431161.2018.1466082
|
Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., et al., 2014. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10): 1840-1843. https://doi.org/10.1109/LGRS.2014.2312032
|
Kuenzer, C., Dech, S., 2013. Thermal Infrared Remote Sensing: Sensors, Methods, Applications. Springer, Amsterdam, Netherlands.
|
Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244(in Chinese with English abstract).
|
Liu, D. C., Tian, F., Qiu, J. T., et al., 2017. Application of Hyperspectral Remote Sensing in Solid Ore Exploration in the Liuyuan-Fangshankou Area. Acta Geologica Sinica, 91(12): 2781-2795(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.12.014
|
Liu, D. F., Chen, S. B., Chen, L., et al., 2015. Silicification Information Extraction Based on the Content of SiO2 from ASTER TIR Data. Earth Science, 40(8): 1396-1402(in Chinese with English abstract).
|
Lou, D. B., Wang, D. H., Li, W. Y., et al., 2022. Progress of Prospecting Prediction Research for Granitic Pegmatite-Type Lithium Deposits at Home and Abroad. Mineral Deposits, 41(5): 975-988(in Chinese with English abstract).
|
Lü, Z. H., Liu, K., Zhang, H., et al., 2023. The Potential Medium- and Large-Scale Be Ore Deposit in Altai, Xinjiang: A Case Study of Pegmatites from Chonghur. Acta Petrologica Sinica, 39(11): 3319-3333(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.11.07
|
Mao, J. W., Song, S. W., Liu, M., et al., 2022. REE Deposits: Basic Characteristics and Global Metallogeny. Acta Geologica Sinica, 96(11): 3675-3697(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.11.001
|
Maurer, T., 2013. How to Pan-Sharpen Images Using the Gram-Schmidt Pan-Sharpen Method: A Recipe. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W1: 239-244. https://doi.org/10.5194/isprsarchives-xl-1-w1-239-2013
|
Mwaniki, M. W., Moeller, M. S., Schellmann, G., 2015. A Comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in Mapping Geology and Visualising Lineaments: A Case Study of Central Region Kenya. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3: 897-903. https://doi.org/10.5194/isprsarchives-xl-7-w3-897-2015
|
Neinavaz, E., Skidmore, A. K., Darvishzadeh, R., 2020. Effects of Prediction Accuracy of the Proportion of Vegetation Cover on Land Surface Emissivity and Temperature Using the NDVI Threshold Method. International Journal of Applied Earth Observation and Geoinformation, 85: 101984. https://doi.org/10.1016/j.jag.2019.101984
|
Qin, Z. H., Zhang, M. H., Arnon, K., et al., 2001. Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM6 Data. Acta Geographica Sinica, 56(4): 456-466(in Chinese with English abstract).
|
Sekertekin, A., Bonafoni, S., 2020. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sensing, 12(2): 294. https://doi.org/10.3390/rs12020294
|
Shaw, R. A., Goodenough, K. M., Roberts, N. M. W., et al., 2016. Petrogenesis of Rare-Metal Pegmatites in High-Grade Metamorphic Terranes: A Case Study from the Lewisian Gneiss Complex of North-West Scotland. Precambrian Research, 281: 338-362. https://doi.org/10.1016/j.precamres.2016.06.008
|
Tardy, B., Rivalland, V., Huc, M., et al., 2016. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data. Remote Sensing, 8(9): 696. https://doi.org/10.3390/rs8090696
|
Wang, D. H., Wang, R. J., Sun, Y., et al., 2016. A Review of Achievements in the Three-Type Rare Mineral Resources (Rare Resources, Rare Earth and Rarely Scattered Resources) Survey in China. Acta Geoscientica Sinica, 37(5): 569-580(in Chinese with English abstract).
|
Wang, H., Qin, X. W., Fan, Y. H., et al., 2018. The Application of High Resolution Remote Sensing Technology to Ore-Prospecting in Dahongliutan-Fulugou Area of West Kunlun Mountains. Geology in China, 45(6): 1289-1301(in Chinese with English abstract).
|
Wang, L., Cheng, Y., Lamb, D., et al., 2020. The Application of Rapid Handheld FTIR Petroleum Hydrocarbon-Contaminant Measurement with Transport Models for Site Assessment: A Case Study. Geoderma, 361: 114017. https://doi.org/10.1016/j.geoderma.2019.114017
|
Wulder, M. A., Loveland, T. R., Roy, D. P., et al., 2019. Current Status of Landsat Program, Science, and Applications. Remote Sensing of Environment, 225: 127-147. https://doi.org/10.1016/j.rse.2019.02.015
|
Xu, X. W., Li, H., Shi, F. P., et al., 2019. Metallogenic Characteristics and Prospecting of Granitic Pegmatite-Type Rare Metal Deposits in the Tugeman Area, Middle Part of Altyn Tagh. Acta Petrologica Sinica, 35(11): 3303-3316(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.03
|
Zhang, C., Li, Z. D., Li, X. G., et al., 2019. Zircon U-Pb Dating and Hf Isotopic and Geochemical Characteristics for K-Feldspar Granite in Zhaojinggou, Inner Mongolia. Acta Petrologica et Mineralogica, 38(3): 303-317(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2019.03.002
|
代晶晶, 王登红, 王海宇, 2019. 我国三稀矿产资源遥感调查综述. 地质学报, 93(6): 1270-1278. doi: 10.3969/j.issn.0001-5717.2019.06.008
|
代晶晶, 赵龙贤, 姜琪, 等, 2020. 热红外高光谱技术在地质找矿中的应用综述. 地质学报, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026
|
段俊斌, 彭鹏, 杨智, 等, 2019. 基于ASTER数据的多金属成矿有利区预测. 国土资源遥感, 31(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201903024.htm
|
鄂阿强, 2018. 内蒙古中部典型花岗岩型稀有金属矿床特征和控矿因素. 有色金属科学与工程, 9(2): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201802011.htm
|
范玉海, 王辉, 杨兴科, 等, 2018. 基于高分辨率遥感数据的稀有金属矿化带勘查. 国土资源遥感, 30(1): 128-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201801018.htm
|
高永年, 张万昌, 2008. 遥感影像地形校正研究进展及其比较实验. 地理研究, 27(2): 467-477, 484. doi: 10.3321/j.issn:1000-0585.2008.02.024
|
高允, 孙艳, 赵芝, 等, 2017. 内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义. 岩矿测试, 36(5): 551-558. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201705014.htm
|
李乐广, 王连训, 朱煜翔, 等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141
|
刘道飞, 陈圣波, 陈磊, 等, 2015. 以SiO2含量为辅助因子的ASTER热红外遥感硅化信息提取. 地球科学, 40(8): 1396-1402. doi: 10.3799/dqkx.2015.124
|
刘德长, 田丰, 邱骏挺, 等, 2017. 柳园-方山口地区航空高光谱遥感固体矿产探测及找矿效果. 地质学报, 91(12): 2781-2795. doi: 10.3969/j.issn.0001-5717.2017.12.014
|
娄德波, 王登红, 李婉悦, 等, 2022. 国内外花岗伟晶岩型锂矿找矿预测研究进展. 矿床地质, 41(5): 975-988. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202205007.htm
|
吕正航, 刘堃, 张辉, 等, 2023. 新疆阿尔泰潜在的中大型铍矿床: 以冲乎尔伟晶岩为例. 岩石学报, 39(11): 3319-3333. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202311007.htm
|
毛景文, 宋世伟, 刘敏, 等, 2022. 稀土矿床: 基本特点与全球分布规律. 地质学报, 96(11): 3675-3697. doi: 10.3969/j.issn.0001-5717.2022.11.001
|
覃志豪, Zhang, M. H., Arnon, K., 等, 2001. 用陆地卫星TM6数据演算地表温度的单窗算法. 地理学报, 56(4): 456-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200104008.htm
|
王登红, 王瑞江, 孙艳, 等, 2016. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述. 地球学报, 37(5): 569-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201605006.htm
|
王辉, 秦绪文, 范玉海, 等, 2018. 高分遥感技术在西昆仑大红柳滩—俘虏沟地区地质找矿中的应用. 中国地质, 45(6): 1289-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806018.htm
|
徐兴旺, 李杭, 石福品, 等, 2019. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测. 岩石学报, 35(11): 3303-3316. doi: 10.18654/1000-0569/2019.11.03
|
张超, 李志丹, 李效广, 等, 2019. 内蒙古赵井沟钾长花岗岩锆石U-Pb定年、Hf同位素和岩石地球化学特征. 岩石矿物学杂志, 38(3): 303-317. doi: 10.3969/j.issn.1000-6524.2019.03.002
|