Citation: | Yuan Hao, Guo Changbao, Wu Ruian, Yan Mingqi, Zhong Ning, 2024. Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China. Earth Science, 49(12): 4659-4672. doi: 10.3799/dqkx.2024.040 |
Agung, M. W., Sassa, K., Fukuoka, H., et al., 2004. Evolution of Shear-Zone Structure in Undrained Ring-Shear Tests. Landslides, 1(2): 101-112. https://doi.org/10.1007/s10346-004-0001-9
|
Cheng, Q. G., Zhang, Z. Y., Huang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84 (in Chinese with English abstract).
|
Cui, S. H., Pei, X. J., Jiang, Y., et al., 2021. Liquefaction within a Bedding Fault: Understanding the Initiation and Movement of the Daguangbao Landslide Triggered by the 2008 Wenchuan Earthquake (Ms = 8.0). Engineering Geology, 295: 106455. https://doi.org/10.1016/j.enggeo.2021.106455
|
Dai, Z. L., Wang, F. W., Cheng, Q. G., et al., 2019. A Giant Historical Landslide on the Eastern Margin of the Tibetan Plateau. Bulletin of Engineering Geology and the Environment, 78(3): 2055-2068. https://doi.org/10.1007/s10064-017-1226-x
|
Fukuoka, H., Sassa, K., Wang, G. H., et al., 2006. Observation of Shear Zone Development in Ring-Shear Apparatus with a Transparent Shear Box. Landslides, 3(3): 239-251. https://doi.org/10.1007/s10346-006-0043-2
|
Guo, C. B., Montgomery, D. R., Zhang, Y. S., et al., 2020. Evidence for Repeated Failure of the Giant Yigong Landslide on the Edge of the Tibetan Plateau. Scientific Reports, 10: 14371. https://doi.org/10.1038/s41598-020-71335-w
|
Guo, C. B., Yan, Y. Q., Zhang, Y. S., et al., 2022. Research Progress and Prospect of Failure Mechanism of Large Deep-Seated Creeping Landslides in Tibetan Plateau, China. Earth Science, 47(10): 3677-3700 (in Chinese with English abstract).
|
Guo, C. B., Zhang, Y. S., Montgomery, D. R., et al., 2016. How Unusual is the Long-Runout of the Earthquake-Triggered Giant Luanshibao Landslide, Tibetan Plateau, China? Geomorphology, 259: 145-154. https://doi.org/10.1016/j.geomorph.2016.02.013
|
Guo, C. B., Zhang, Y. S., Zhang, Y. N., et al., 2023. Freeze-Thaw Cycle Effects on Granite and the Formation Mechanism of Long-Runout Landslides: Insights from the Luanshibao Case Study in the Tibetan Plateau, China. Bulletin of Engineering Geology and the Environment, 82(10): 394. https://doi.org/10.1007/s10064-023-03427-6
|
Habib, P., 1975. Production of Gaseous Pore Pressure during Rock Slides. Rock Mechanics, 7(4): 193-197. https://doi.org/10.1007/bf01246865
|
Hu, M. J., Wang, F. W., Cheng, Q. G., 2009. Formation of Tremendous Yigong Landslide Based on High-Speed Shear Tests. Chinese Journal of Geotechnical Engineering, 31(10): 1602-1606 (in Chinese with English abstract).
|
Hu, W., Chang, C. S., McSaveney, M., et al., 2020. A Weakening Rheology of Dry Granular Flows with Extensive Brittle Grain Damage in High-Speed Rotary Shear Experiments. Geophysical Research Letters, 47(11): e2020GL087763. https://doi.org/10.1029/2020gl087763
|
Marsal, R. J., 1967. Large Scale Testing of Rockfill Materials. Journal of the Soil Mechanics and Foundations Division, 93(2): 27-43. https://doi.org/10.1061/jsfeaq.0000958
|
Plafker, G., Ericksen, G. E., 1978. Nevados Huascarán Avalanches, Peru. Developments in Geotechnical Engineering. Elsevier, Amsterdam, 277-314. https://doi.org/10.1016/b978-0-444-41507-3.50016-7
|
Sassa, K., Dang, K., He, B., et al., 2014. A New High-Stress Undrained Ring-Shear Apparatus and Its Application to the 1792 Unzen-Mayuyama Megaslide in Japan. Landslides, 11(5): 827-842. https://doi.org/10.1007/s10346-014-0501-1
|
Sassa, K., Fukuoka, H., Scarascia-Mugnozza, G., et al., 1996. Earthquake-Induced-Landslides: Distribution, Motion and Mechanisms. Soils and Foundations, 36: 53-64. https://doi.org/10.3208/sandf.36.Special_53
|
Siman-Tov, S., Brodsky, E. E., 2018. Gravity-Independent Grain Size Segregation in Experimental Granular Shear Flows as a Mechanism of Layer Formation. Geophysical Research Letters, 45(16): 8136-8144. https://doi.org/10.1029/2018gl078486
|
Timothy, R. H. D., 1982. Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15(1): 9-24. https://doi.org/10.1007/bf01239474
|
Timothy, R. H. D., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/t99-067
|
Wang, F. W., Sassa, K., 2007. Initiation and Traveling Mechanisms of the May 2004 Landslide-Debris Flow at Bettou-Dani of the Jinnosuke-Dani Landslide, Haku-San Mountain, Japan. Soils and Foundations, 47(1): 141-152. https://doi.org/10.3208/sandf.47.141
|
Wang, F. W., 2019. Liquefactions Caused by Structure Collapse and Grain Crushing of Soils in Rapid and Long Runout Landslides Triggered by Earthquakes. Journal of Engineering Geology, 27(1): 98-107 (in Chinese with English abstract).
|
Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche (Tibetan Plateau, China) Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183. https://doi.org/10.1016/j.geomorph.2018.05.025
|
Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2023. Rock Avalanches in the Tibetan Plateau of China. In: Alcántara-Ayala, I., Arbanas, Ž., Cuomo, S., et al., eds., Progress in Landslide Research and Technology. Springer, Switzerland, 55-111.
|
Wu, R. A., Zhang, Y. S., Guo, C. B., et al., 2018. Characteristics and Formation Mechanisms of the Lagangcun Giant Ancient Landslide in Jiacha, Tibet. Acta Geologica Sinica, 92(6): 1324-1334(in Chinese with English abstract).
|
Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2005. Average Slip Rate, Earthquake Rupturing Segmentation and Recurrence Behavior on the Litang Fault Zone, Western Sichuan Province, China. Science in China: Earth Sciences, 48(8): 1183-1196. https://doi.org/10.1360/04yd0072
|
Yan, Y. Q., Guo, C. B., Zhong, N., et al., 2022. Deformation Characteristics of Jiaju Ancient Landslide Based on InSAR Monitoring Method, Sichuan, China. Earth Science, 47(12): 4681-4697(in Chinese with English abstract).
|
Yin, Y. P., 2000. Characteristics and Disaster Mitigation Research on the Giant Landslide in Bomi, Yigong, Xizang. Hydrogeology & Engineering Geology, 44(4): 8-11 (in Chinese with English abstract).
|
Yin, Y. P., Li, B., Gao, Y., et al., 2023. Geostructures, Dynamics and Risk Mitigation of High-Altitude and Long-Runout Rockslides. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 66-101. https://doi.org/10.1016/j.jrmge.2022.11.001
|
Yin, Y. P., Wang, W. P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841(in Chinese with English abstract).
|
Zeng, Q. L., Yuan, G. X., Davies, T., et al., 2020. 10Be Dating and Seismic Origin of Luanshibao Rock Avalanche in SE Tibetan Plateau and Implications on Litang Active Fault. Landslides, 17(5): 1091-1104. https://doi.org/10.1007/s10346-019-01319-z
|
Zeng, Q. L., Wei, R. Q., McSaveney, M., et al., 2021. From Surface Morphologies to Inner Structures: Insights into Hypermobility of the Nixu Rock Avalanche, Southern Tibet, China. Landslides, 18(1): 125-143. https://doi.org/10.1007/s10346-020-01503-6
|
Zhang, M., Yin, Y. P., Wu, S. R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6): 805-817(in Chinese with English abstract).
|
Zhu, L., Cui, S. H., Pei, X. J., et al., 2022. Investigation of the Characteristics and Long-Runout Movement Mechanisms of the Luanshibao Landslide on the Eastern Margin of the Qinghai-Tibet Plateau. Soil Dynamics and Earthquake Engineering, 153: 107094. https://doi.org/10.1016/j.soildyn.2021.107094
|
程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84.
|
郭长宝, 闫怡秋, 张永双, 等, 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望. 地球科学, 47(10): 3677-3700.
|
胡明鉴, 汪发武, 程谦恭, 2009. 基于高速环剪试验易贡巨型滑坡形成原因试验探索. 岩土工程学报, 31(10): 1602-1606.
|
汪发武, 2019. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理. 工程地质学报, 27(1): 98-107.
|
吴瑞安, 张永双, 郭长宝, 等, 2018. 西藏加查拉岗村巨型古滑坡发育特征与形成机理研究. 地质学报, 92(6): 1324-1334.
|
闫怡秋, 郭长宝, 钟宁, 等, 2022. 基于InSAR形变监测的四川甲居古滑坡变形特征. 地球科学, 47(12): 4681-4697.
|
殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
|
殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841.
|
张明, 殷跃平, 吴树仁, 等, 2010. 高速远程滑坡-碎屑流运动机理研究发展现状与展望. 工程地质学报, 18(6): 805-817.
|