• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Wang Yuting, Du jingguo, Lei Ruxiong, Deng Xiaohua, Wu Changzhi, 2024. Fluid Characteristics and Mineralization Process of Cryptoexplosive Breccia-Type Li-Rb Ore Body in Weilasituo Deposit, Inner Mongolia. Earth Science, 49(12): 4318-4334. doi: 10.3799/dqkx.2024.054
    Citation: Wang Yuting, Du jingguo, Lei Ruxiong, Deng Xiaohua, Wu Changzhi, 2024. Fluid Characteristics and Mineralization Process of Cryptoexplosive Breccia-Type Li-Rb Ore Body in Weilasituo Deposit, Inner Mongolia. Earth Science, 49(12): 4318-4334. doi: 10.3799/dqkx.2024.054

    Fluid Characteristics and Mineralization Process of Cryptoexplosive Breccia-Type Li-Rb Ore Body in Weilasituo Deposit, Inner Mongolia

    doi: 10.3799/dqkx.2024.054
    • Received Date: 2024-01-20
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • Three main types of ore bdies are well developed in the Weilasituo deposit, including alkaline granite type Sn-Rb ore body, cryptoexplosive breccia-type Li-Rb ore body, and quartz vein type Sn ore body. The cryptoexplosive breccia-type ore body was located between the other two types of ore bodies and was assumed as the key point to understand the process and genesis of the cryptoexplosive breccia-type ore body. This contribution mainly focuses on quartz crystals and fluid inclusions therein from the cryptoexplosive breccia-type ore body. Through quartz cathodoluminescence imaging, fluid inclusion microthermometry, laser Raman spectroscopy, and in situ oxygen isotope analysis, it tries to address the relationship between fluid evolution and Li-Rb mineralization. Three stages (Q1, Q2, and Q3) of crystallization have been identified based on quartz CL imaging, while Q1 and Q2 are well-developed and closely related to Li-Rb mineralization. Fluid inclusions in Q2 exhibit similar salinity but lower homogeneous temperatures than those in Q1.The oxygen isotope composition of Q2 is lighter than that of Q1. Combined with previous and our study results, it is assumed that the cryptoexplosive breccia-type mineralization of Weilasituo should be formed by cryptoexplosion of volatile which converges on the top of mineralized porphyry, and the mixing of magmatic-hydrothermal fluid and meteoric water might control the precipitation process of zinnwaldite, and eventually form the cryptoexplosive breccia-type Li-Rb mineralization of Weilasituo.

       

    • loading
    • Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78(3): 535-542. https://doi.org/10.2113/gsecongeo.78.3.535
      Bowell, R. J., Lagos, L., de los Hoyos, C. R., et al., 2020. Classification and Characteristics of Natural Lithium Resources. Elements, 16(4): 259-264. https://doi.org/10.2138/gselements.16.4.259
      Chen, F. C., Deng, J., Wang, Q. F., et al., 2018. The Source and Evolution of Ore Fluids in the Heiniuwa Gold Deposit, Baoshan Block, Sanjiang Region: Constraints from Sulfide Trace Element, Fluid Inclusion and Stable Isotope Studies. Ore Geology Reviews, 95: 725-745. https://doi.org/10.1016/j.oregeorev.2018.03.013
      Chen, G. Z., Wu, G., Li, Y. L., et al., 2022. Zircon U-Pb Age and Geochemistry of the Qianjinchang Intrusion in the Southern Great Xing'an Range and Its Geological Implications. Geotectonica et Metallogenia, 46(2): 356-379(in Chinese with English abstract).
      Chen, G. Z., Wu, G., Wu, W. H., et al., 2018. Fluid Inclusion Study and Isotope Characteristics of the Daolundaba Copper-Polymetallic Deposit in the Southern Great Xing'an Range. Earth Science Frontiers, 25(5): 202-221(in Chinese with English abstract).
      Clayton, R. N., O'Neil, J. R., Mayeda, T. K., 1972. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. https://doi.org/10.1029/jb077i017p03057
      Driesner, T., Heinrich, C., 2007. The System H2O-NaCl. Part I: Correlation Formulae for Phase Relations in Temperature-Pressure-Composition Space from 0 to 1 000 ℃, 0 to 5 000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71: 4880-4901. https://doi.org/10.1016/j.gca.2006.01.033
      Gong, M., Wu, J. H., Ji, H., et al., 2023. Occurrence of Lithium and Geochronology of Magmatism and Mineralization in Dagang Granite-Associated Lithium Deposit, West Jiangxi Province. Earth Science, 48(12): 4370-4386(in Chinese with English abstract).
      Guo, L. X., Liu, J. M., Zeng, Q. D., et al., 2018. Fluid Inclusion Characteristics of the Weilasituo Sn Polymetallic Ore Deposit, Inner Mongolia, China. Earth Science Frontiers, 25(1): 168-181(in Chinese with English abstract).
      Han, L., Pan, J. Y., Ni, P., et al., 2023. Cassiterite Deposition Induced by Cooling of a Single-Phase Magmatic Fluid: Evidence from SEM-CL and Fluid Inclusion LA-ICP-MS Analysis. Geochimica et Cosmochimica Acta, 342: 108-127. https://doi.org/10.1016/j.gca.2022.12.011
      Hedenquist, J. W., Lowenstern, J. B., 1994. The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 370: 519-527. https://doi.org/10.1038/370519a0
      Jiang, C. Y., 2019. Fluid Inclusion Characteristics and Isotopic Composition of the Weilasituo Sn Polymetallic Ore Deposit, Inner Mongolia, China(Dissertation). China University of Geosciences, Beijing, 27-28(in Chinese with English abstract).
      Jiang, S. Y., Su, H. M., Zhu, X. Y., et al., 2022. A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type. Journal of Earth Science, 33(5): 1095-1113. https://doi.org/10.1007/s12583-022-1736-8
      Jiang, S. Y., Zhao, K. D., Jiang, H., et al., 2020. Spatiotemporal Distribution, Geological Characteristics and Metallogenic Mechanism of Tungsten and Tin Deposits in China: An Overview. Chinese Science Bulletin, 65(33): 3730-3745(in Chinese).
      Keller, J., Hoefs, J., 1995. Stable Isotope Characteristics of Recent Natrocarbonatites from Oldoinyo Lengai. In: Bell, K., Keller, J., eds., IAVCEI Proceedings in Volcanology. Springer, Berlin Heidelberg, 113-123.https://doi.org/10.1007/978-3-642-79182-6_9
      Li, S. D., Wang, Y. C., Gao, L. L., et al., 2023. Magma-Related Origin for Pb-Zn-Ag Vein Formation at the Aerhada Deposit, Inner Mongolia, NE China: Constraints from Fluid Inclusion, C-H-O-S-Pb Isotopic Compositions, and Geochronological Studies. Ore Geology Reviews, 163: 105793. https://doi.org/10.1016/j.oregeorev.2023.105793
      Liu, J. M., Ye, J., Xu, J. H., et al., 2003. C-O and Sr-Nd Isotopic Geochemistry of Carbonate Minerals from Gold Deposits in East Shandong, China. Acta Petrologica Sinica, 19(4): 775-784(in Chinese with English abstract).
      Liu, R. L., Wu, G., Chen, G. Z., et al., 2018. Characteristics of Fluid Inclusions and H-O-C-S-Pb Isotopes of Weilasituo Sn-Polymetallic Deposit in Southern Da Hinggan Mountains. Mineral Deposits, 37(2): 199-224(in Chinese with English abstract).
      Liu, W., Li, X. J., Tan, J., 2002. Fluid Mixing in the Dajing Copper-Tin-Silver-Lead-Zinc Deposit, Inner Mongolia—Evidence from Fluid Inclusions and Stable Isotopes. Science in China (Series D), 32(5): 405-414(in Chinese).
      Liu, Y. F., Jiang, S. H., Bagas, L., 2016. The Genesis of Metal Zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) Deposits in the Shallow Part of a Porphyry Sn-W-Rb System, Inner Mongolia, China. Ore Geology Reviews, 75: 150-173. https://doi.org/10.1016/j.oregeorev.2015.12.006
      Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusion. Scinece Publishing House, Beijing, 132-137(in Chinese).
      Peng, N. J., Jiang, S. Y., Xiong, S. F., et al., 2018. Fluid Evolution and Ore Genesis of the Dalingshang Deposit, Dahutang W-Cu Ore Field, Northern Jiangxi Province, South China. Mineralium Deposita, 53(8): 1079-1094. https://doi.org/10.1007/s00126-018-0796-2
      Quan, H. Y., Cai, W. Y., Zhang, X. B., et al., 2017. Characteristics of Fluid Inclusions and Genesis of Weilasituo Pb-Zn Deposit, Inner Mongolia. Global Geology, 36(1): 105-117(in Chinese with English abstract).
      Sheppard, S. M., 1986. Characterization and Isotopic Variations in Natural Waters. Reviews in Mineralogy and Geochemistry, 16(1): 165-183. https://doi.org/10.1515/9781501508936-011
      Shu, Q., Lai, Y., Sun, Y., et al., 2013. Ore Genesis and Hydrothermal Evolution of the Baiyinnuo'er Zinc-Lead Skarn Deposit, Northeast China: Evidence from Isotopes (S, Pb) and Fluid Inclusions. Economic Geology, 108(4): 835-860. https://doi.org/10.2113/econgeo.108.4.835
      Sun, Y. L., Xu, H., Zhu, X. Y., et al., 2017. Characteristics of Fluid Inclusion and Its Geological Significance in the Weilasituo Tin Polymetallic Deposit, Inner Mongolia. Mineral Exploration, 8(6): 1044-1053 (in Chinese with English abstract).
      Taylor, H. P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843-883. https://doi.org/10.2113/gsecongeo.69.6.843
      Wang, F. X., Bagas, L., Jiang, S. H., et al., 2017. Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China. Ore Geology Reviews, 80: 1206-1229. https://doi.org/10.1016/j.oregeorev.2016.09.021
      Wang, H., Huang, L., Bai, H. Y., et al., 2022. Types, Distribution, Development and Utilization of Lithium Mineral Resources in China: Review and Perspective. Geotectonica et Metallogenia, 46(5): 848-866(in Chinese with English abstract).
      Wang, J., Hou, Q. Y., Chen, Y. L., et al., 2010. Fluid Inclusion Study of the Weilasituo Cu Polymetal Deposit in Inner Mongolia. Geoscience, 24(5): 847-855(in Chinese with English abstract).
      Wang, T., Guo, L., Zheng, Y. D., et al., 2012. Timing and Processes of Late Mesozoic Mid-Lower-Crustal Extension in Continental NE Asia and Implications for the Tectonic Setting of the Destruction of the North China Craton: Mainly Constrained by Zircon U-Pb Ages from Metamorphic Core Complexes. Lithos, 154: 315-345. https://doi.org/10.1016/j.lithos.2012.07.020
      Wang, X. Y., Hou, Q. Y., Wang, J., et al., 2013. SHRIMP Geochronology and Hf Isotope of Zircons from Granitoids of the Weilasituo Deposit in Inner Mongolia. Geoscience, 27(1): 67-78(in Chinese with English abstract).
      Wu, G., Liu, R. L., Chen, G. Z., et al., 2021. Mineralization of the Weilasituo Rare Metaltin-Polymetallic Ore Deposit in Inner Mongolia: Insights from Fractional Crystallization of Granitic Magmas. Acta Petrologica Sinica, 37(3): 637-664(in Chinese with English abstract).
      Xi, W. W., Zhao, Y. H., Ni, P., et al., 2023. Main Types, Characteristics, Distributions, and Prospecting Potential of Lithium Deposits. Sedimentary Geology and Tethyan Geology, 43(1): 19-35(in Chinese with English abstract).
      Zhai, D. G., Liu, J. J., Li, J. M., et al., 2016. Geochronological Study of Weilasituo Porphyry Type Sn Deposit in Inner Mongolia and Its Geological Significance. Mineral Deposits, 35(5): 1011-1022(in Chinese with English abstract).
      Zhou, Z. H., Gao, X., Ouyang, H. G., et al., 2019. Formation Mechanism and Intrinsic Genetic Relationship between Tin-Tungsten-Lithium Mineralization and Peripheral Lead-Zinc-Silver-Copper Mineralization: Exemplified by Weilasituo Tin-Tungsten-Lithium Polymetallic Deposit, Inner Mongolia. Mineral Deposits, 38(5): 1004-1022(in Chinese with English abstract).
      Zhou, Z. H., Wang, A. S., Li, T., 2011. Fluid Inclusion Characteristics and Metallogenic Mechanism of Huanggang Sn-Fe Deposit in Inner Mongolia. Mineral Deposits, 30(5): 867-889(in Chinese with English abstract).
      Zhu, K. Y., Jiang, S. Y., Su, H. M., et al., 2021. In Situ Geochemical Analysis of Multiple Generations of Sphalerite from the Weilasituo Sn-Li-Rb-Cu-Zn Ore Field (Inner Mongolia, Northeastern China): Implication for Critical Metal Enrichment and Ore-Forming Process. Ore Geology Reviews, 139: 104473. https://doi.org/10.1016/j.oregeorev.2021.104473
      Zhu, X. Y., Zhang, Z. H., Fu, X., et al., 2016. Geological and Geochemical Characteristics of the Weilasito Sn-Zn Deposit, Inner Mongolia. Geology in China, 43(1): 188-208(in Chinese with English abstract).
      陈公正, 武广, 李英雷, 等, 2022. 大兴安岭南段前进场岩体锆石U-Pb年龄、地球化学及其地质意义. 大地构造与成矿学, 46(2): 356-379.
      陈公正, 武广, 武文恒, 等, 2018. 大兴安岭南段道伦达坝铜多金属矿床流体包裹体研究和同位素特征. 地学前缘, 25(5): 202-221.
      龚敏, 吴俊华, 季浩, 等, 2023. 赣西大港花岗岩型锂矿床锂赋存状态及成岩成矿年代学. 地球科学, 48(12): 4370-4386. doi: 10.3799/dqkx.2023.193
      郭理想, 刘建明, 曾庆栋, 等, 2018. 内蒙古维拉斯托锡多金属矿流体包裹体特征. 地学前缘, 25(1): 168-181.
      江超云, 2019. 内蒙古维拉斯托锡多金属矿床流体包裹体和同位素组成研究(硕士学位论文). 北京: 中国地质大学, 27-28.
      蒋少涌, 赵葵东, 姜海, 等, 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展. 科学通报, 65(33): 3730-3745.
      刘瑞麟, 武广, 陈公正, 等, 2018. 大兴安岭南段维拉斯托锡多金属矿床流体包裹体和同位素特征. 矿床地质, 37(2): 199-224.
      刘伟, 李新俊, 谭骏, 2002. 内蒙古大井铜-锡-银-铅-锌矿床的流体混合作用: 流体包裹体和稳定同位素证据. 中国科学(D辑), 32(5): 405-414.
      刘建明, 叶杰, 徐九华, 等, 2003. 胶东金矿床碳酸盐矿物的碳-氧和锶-钕同位素地球化学研究. 岩石学报, 19(4): 775-784.
      卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社, 132-137.
      权鸿雁, 蔡文艳, 张雪冰, 等, 2017. 内蒙古维拉斯托铅锌矿床流体包裹体特征及矿床成因研究. 世界地质, 36(1): 105-117.
      孙雅琳, 许虹, 祝新友, 等, 2017. 内蒙古维拉斯托锡多金属矿床流体包裹体特征及其地质意义. 矿产勘查, 8(6): 1044-1053.
      王核, 黄亮, 白洪阳, 等, 2022. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望. 大地构造与成矿学, 46(5): 848-866.
      王瑾, 侯青叶, 陈岳龙, 等, 2010. 内蒙古维拉斯托铜多金属矿床流体包裹体研究. 现代地质, 24(5): 847-855.
      王新宇, 侯青叶, 王瑾, 等, 2013. 内蒙古维拉斯托矿床花岗岩类SHRIMP年代学及Hf同位素研究. 现代地质, 27(1): 67-78.
      武广, 刘瑞麟, 陈公正, 等, 2021. 内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示. 岩石学报, 37(3): 637-664.
      隰弯弯, 赵宇浩, 倪培, 等, 2023. 锂矿主要类型、特征、时空分布及找矿潜力分析. 沉积与特提斯地质, 43(1): 19-35.
      翟德高, 刘家军, 李俊明, 等, 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义. 矿床地质, 35(5): 1011-1022.
      周振华, 高旭, 欧阳荷根, 等, 2019. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制: 以内蒙古维拉斯托锡钨锂多金属矿床为例. 矿床地质, 38(5): 1004-1022.
      周振华, 王挨顺, 李涛, 2011. 内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究. 矿床地质, 30(5): 867-889.
      祝新友, 张志辉, 付旭, 等, 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征. 中国地质, 43(1): 188-208.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(2)

      Article views (351) PDF downloads(48) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return