Citation: | Yuan Yuan, Liu Yongqin, 2025. Research Progress on Microbes Involved in Lacustrine Iron/Sulfur Cycling. Earth Science, 50(3): 887-907. doi: 10.3799/dqkx.2024.055 |
Aromokeye, D. A., Richter-Heitmann, T., Oni, O. E., et al., 2018. Temperature Controls Crystalline Iron Oxide Utilization by Microbial Communities in Methanic Ferruginous Marine Sediment Incubations. Frontiers in Microbiology, 9: 2574. https://doi.org/10.3389/fmicb.2018.02574
|
Arroyo, F. A., Siering, P. L., Hampton, J. S., et al., 2015. Isolation and Characterization of Novel Iron-Oxidizing Autotrophic and Mixotrophic Bacteria from Boiling Springs Lake, an Oligotrophic, Acidic Geothermal Habitat. Geomicrobiology Journal, 32(2): 140-157. https://doi.org/10.1080/01490451.2014.935533
|
Aubert, C., Brugna, M., Dolla, A., et al., 2000. A Sequential Electron Transfer from Hydrogenases to Cytochromes in Sulfate-Reducing Bacteria. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1476(1): 85-92. https://doi.org/10.1016/S0167-4838(99)00221-6
|
Backlund, K., Boman, A., Fröjdö, S., 2008. An Analytical Procedure for Determination of Sulphur Species and Isotopes in Boreal Acid Sulphate Soils and Sediments. Agricultural and Food Science, 14(1): 70. https://doi.org/10.2137/1459606054224147
|
Bao, Y. P., Guo, C. L., Wang, H., et al., 2017. Fe- and S-Metabolizing Microbial Communities Dominate an AMD-Contaminated River Ecosystem and Play Important Roles in Fe and S Cycling. Geomicrobiology Journal, 34(8): 695-705. https://doi.org/10.1080/01490451.2016.1243596
|
Barbeau, K., Rue, E. L., Bruland, K. W., et al., 2001. Photochemical Cycling of Iron in the Surface Ocean Mediated by Microbial Iron(Ⅲ)-Binding Ligands. Nature, 413(6854): 409-413. https://doi.org/10.1038/35096545
|
Berg, J. S., Jézéquel, D., Duverger, A., et al., 2019. Microbial Diversity Involved in Iron and Cryptic Sulfur Cycling in the Ferruginous, Low-Sulfate Waters of Lake Pavin. PLoS One, 14(2): e0212787. https://doi.org/10.1371/journal.pone.0212787
|
Berg, J. S., Michellod, D., Pjevac, P., et al., 2016. Intensive Cryptic Microbial Iron Cycling in the Low Iron Water Column of the Meromictic Lake Cadagno. Environmental Microbiology, 18(12): 5288-5302. https://doi.org/10.1111/1462-2920.13587
|
Berner, R. A., 1984. Sedimentary Pyrite Formation. Geochimica et Cosmochimica Acta, 48(4): 605-615. https://doi.org/10.1016/0016-7037(84)90089-9.
|
Bond, D. R., Lovley, D. R., 2002. Reduction of Fe(Ⅲ) Oxide by Methanogens in the Presence and Absence of Extracellular Quinones. Environmental Microbiology, 4(2): 115-124. https://doi.org/10.1046/j.1462-2920.2002.00279.x
|
Bottrell, S. H., Newton, R. J., 2006. Reconstruction of Changes in Global Sulfur Cycling from Marine Sulfate Isotopes. Earth-Science Reviews, 75(1-4): 59-83. https://doi.org/10.1016/j.earscirev.2005.10.004
|
Boughanemi, S., Lyonnet, J., Infossi, P., et al., 2016. Microbial Oxidative Sulfur Metabolism: Biochemical Evidence of the Membrane-Bound Heterodisulfide Reductase-Like Complex of the Bacterium Aquifex aeolicus. FEMS Microbiology Letters, 363. https://doi: 10.1093/femsle/fnw156.
|
Boyd, P. W., Ellwood, M. J., 2010. The Biogeochemical Cycle of Iron in the Ocean. Nature Geoscience, 3: 675-682. https://doi.org/10.1038/ngeo964
|
Breuer, M., Rosso, K. M., Blumberger, J., et al., 2015. Multi-Haem Cytochromes in Shewanella Oneidensis MR-1: Structures, Functions and Opportunities. Journal of the Royal Society, Interface, 12(102): 20141117. https://doi.org/10.1098/rsif.2014.1117
|
Broco, M., Rousset, M., Oliveira, S., et al., 2005. Deletion of Flavoredoxin Gene in Desulfovibrio Gigas Reveals Its Participation in Thiosulfate Reduction. FEBS Letters, 579(21): 4803-4807. https://doi.org/10.1016/j.febslet.2005.07.044
|
Brune, D. C., 1989. Sulfur Oxidation by Phototrophic Bacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 975(2): 189-221. https://doi.org/10.1016/S0005-2728(89)80251-8
|
Bryant, D. A., Frigaard, N. U., 2006. Prokaryotic Photosynthesis and Phototrophy Illuminated. Trends in Microbiology, 14(11): 488-496. https://doi.org/10.1016/j.tim.2006.09.001
|
Bryce, C., Blackwell, N., Schmidt, C., et al., 2018a. Microbial Anaerobic Fe(Ⅱ) Oxidation-Ecology, Mechanisms and Environmental Implications. Environmental Microbiology, 20(10): 3462-3483. https://doi.org/10.1111/1462-2920.14328
|
Bryce, C., Franz-Wachtel, M., Nalpas, N. C., et al., 2018b. Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(Ⅱ) Oxidation. Applied and Environmental Microbiology, 84(16): e01166-18. https://doi.org/10.1128/AEM.01166-18
|
Cao, J. X., Sun, Q., Zhao, D. H., et al., 2020. A Critical Review of the Appearance of Black-Odorous Waterbodies in China and Treatment Methods. Journal of Hazardous Materials, 385: 121511. https://doi.org/10.1016/j.jhazmat.2019.121511
|
Carlson, H. K., Clark, I. C., Blazewicz, S. J., et al., 2013. Fe(Ⅱ) Oxidation Is an Innate Capability of Nitrate-Reducing Bacteria that Involves Abiotic and Biotic Reactions. Journal of Bacteriology, 195(14): 3260-3268. https://doi.org/10.1128/JB.00058-13
|
Chao, T. T., Zhou, L. Y., 1983. Extraction Techniques for Selective Dissolution of Amorphous Iron Oxides from Soils and Sediments. Soil Science Society of America Journal, 47(2): 225-232. https://doi.org/10.2136/sssaj1983.03615995004700020010x
|
Chen, J. S., Yang, J., Jiang, H. C., 2020. Research Progress on Microbes Involved in Lacustrine Sulfur Cycling. Acta Microbiologica Sinica, 60(6): 1177-1191 (in Chinese with English abstract).
|
Cheng, M. Y., Luo, S., Zhang, P., et al., 2024. A Genome and Gene Catalog of the Aquatic Microbiomes of the Tibetan Plateau. Nature Communications, 15: 1438. https://doi.org/10.1038/s41467-024-45895-8
|
Cravo-Laureau, C., Labat, C., Joulian, C., et al., 2007. Desulfatiferula Olefinivorans Gen. Nov., Sp. Nov., a Long-Chain N-Alkene-Degrading, Sulfate-Reducing Bacterium. International Journal of Systematic and Evolutionary Microbiology, 57(11): 2699-2702. https://doi.org/10.1099/ijs.0.65240-0
|
Cypionka, H., 2000. Oxygen Respiration by Desulfovibrio Species. Annual Review of Microbiology, 54: 827-848. https://doi.org/10.1146/annurev.micro.54.1.827
|
Dahl, C., 2015. Cytoplasmic Sulfur Trafficking in Sulfur-Oxidizing Prokaryotes. IUBMB Life, 67(4): 268-274. https://doi.org/10.1002/iub.1371
|
Dahl, C., Engels, S., Pott-Sperling, A. S., et al., 2005. Novel Genes of the Dsr Gene Cluster and Evidence for Close Interaction of Dsr Proteins during Sulfur Oxidation in the Phototrophic Sulfur Bacterium Allochromatium Vinosum. Journal of Bacteriology, 187(4): 1392-1404. https://doi.org/10.1128/JB.187.4.1392-1404.2005
|
Daly, K., Sharp, R. J., McCarthy, A. J., 2000. Development of Oligonucleotide Probes and PCR Primers for Detecting Phylogenetic Subgroups of Sulfate-Reducing Bacteria. Microbiology, 146 (Pt 7): 1693-1705. https://doi.org/10.1099/00221287-146-7-1693
|
Dede, B., Hansen, C. T., Neuholz, R., et al., 2022. Niche Differentiation of Sulfur-Oxidizing Bacteria (SUP05) in Submarine Hydrothermal Plumes. The ISME Journal, 16(6): 1479-1490. https://doi.org/10.1038/s41396-022-01195-x
|
Deng, Y. C., Liu, Y. Q., Dumont, M., et al., 2017. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau. Microbial Ecology, 73(1): 101-110. https://doi.org/10.1007/s00248-016-0879-5
|
Dev, S., Patra, A. K., Mukherjee, A., et al., 2015. Suitability of Different Growth Substrates as Source of Nitrogen for Sulfate Reducing Bacteria. Biodegradation, 26(6): 415-430. https://doi.org/10.1007/s10532-015-9745-2
|
Dong, H. L., Zhang, G. X., Jiang, H. C., et al., 2006. Microbial Diversity in Sediments of Saline Qinghai Lake, China: Linking Geochemical Controls to Microbial Ecology. Microbial Ecology, 51(1): 65-82. https://doi.org/10.1007/s00248-005-0228-6
|
Dreher, C. L., Schad, M., Robbins, L. J., et al., 2021. Microbial Processes during Deposition and Diagenesis of Banded Iron Formations. Palaontologische Zeitschrift, 95(4): 593-610. https://doi.org/10.1007/s12542-021-00598-z
|
Ehrlich, H. L., 1963. Microorganisms in Acid Drainage from a Copper Mine. Journal of Bacteriology, 86(2): 350-352. https://doi.org/10.1128/jb.86.2.350-352.1963
|
El Houari, A., Ranchou-Peyruse, M., Ranchou-Peyruse, A., et al., 2017. Desulfobulbus Oligotrophicus Sp. Nov., a Sulfate-Reducing and Propionate-Oxidizing Bacterium Isolated from a Municipal Anaerobic Sewage Sludge Digester. International Journal of Systematic and Evolutionary Microbiology, 67(2): 275-281. https://doi.org/10.1099/ijsem.0.001615
|
Elul, M., Rubin-Blum, M., Ronen, Z., et al., 2021. Metagenomic Insights into the Metabolism of Microbial Communities that Mediate Iron and Methane Cycling in Lake Kinneret Iron-Rich Methanic Sediments. Biogeosciences, 18(6): 2091-2106. https://doi.org/10.5194/bg-18-2091-2021
|
Emerson, D., Fleming, E. J., McBeth, J. M., 2010. Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective. Annual Review of Microbiology, 64: 561-583. https://doi.org/10.1146/annurev.micro.112408.134208
|
Emmenegger, L., Schönenberger, R., Sigg, L., et al., 2001. Light-Induced Redox Cycling of Iron in Circumneutral Lakes. Limnology and Oceanography, 46(1): 49-61. https://doi.org/10.4319/lo.2001.46.1.0049
|
Esther, J., Sukla, L. B., Pradhan, N., et al., 2015. Fe (Ⅲ) Reduction Strategies of Dissimilatory Iron Reducing Bacteria. Korean Journal of Chemical Engineering, 32(1): 1-14. https://doi.org/10.1007/s11814-014-0286-x
|
Fan, Y. Y., Li, B. B., Yang, Z. C., et al., 2018. Abundance and Diversity of Iron Reducing Bacteria Communities in the Sediments of a Heavily Polluted Freshwater Lake. Applied Microbiology and Biotechnology, 102(24): 10791-10801. https://doi.org/10.1007/s00253-018-9443-1
|
Fang, Y., Liu, J., Yang, J., et al., 2022. Compositional and Metabolic Responses of Autotrophic Microbial Community to Salinity in Lacustrine Environments. mSystems, 7(4): e0033522. https://doi.org/10.1128/msystems.00335-22
|
Fike, D. A., Bradley, A. S., Rose, C. V., 2015. Rethinking the Ancient Sulfur Cycle. Annual Review of Earth and Planetary Sciences, 43: 593-622. https://doi.org/10.1146/annurev-earth-060313-054802
|
Flynn, T. M., O'Loughlin, E. J., Mishra, B., et al., 2014. Sulfur-Mediated Electron Shuttling during Bacterial Iron Reduction. Science, 344(6187): 1039-1042. https://doi.org/10.1126/science.1252066
|
Ghosh, W., Dam, B., 2009. Biochemistry and Molecular Biology of Lithotrophic Sulfur Oxidation by Taxonomically and Ecologically Diverse Bacteria and Archaea. FEMS Microbiology Reviews, 33(6): 999-1043. https://doi.org/10.1111/j.1574-6976.2009.00187.x
|
Ghosh, W., Roy, P., 2006. Mesorhizobium Thiogangeticum sp. nov., a Novel Sulfur-Oxidizing Chemolithoautotroph from Rhizosphere Soil of an Indian Tropical Leguminous Plant. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 1): 91-97. https://doi.org/10.1099/ijs.0.63967-0
|
Gnanaprakasam, E. T., Lloyd, J. R., Boothman, C., et al., 2017. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. mBio, 8(6): e01326-17. https://doi.org/10.1128/mBio.01326-17
|
Gregersen, L. H., Bryant, D. A., Frigaard, N. U., 2011. Mechanisms and Evolution of Oxidative Sulfur Metabolism in Green Sulfur Bacteria. Frontiers in Microbiology, 2: 116. https://doi.org/10.3389/fmicb.2011.00116
|
Günther, F., Thiele, A., Gleixner, G., et al., 2014. Distribution of Bacterial and Archaeal Ether Lipids in Soils and Surface Sediments of Tibetan Lakes: Implications for GDGT-Based Proxies in Saline High Mountain Lakes. Organic Geochemistry, 67: 19-30. https://doi.org/10.1016/j.orggeochem.2013.11.014
|
Gwak, J. H., Awala, S. I., Nguyen, N. L., et al., 2022. Sulfur and Methane Oxidation by a Single Microorganism. Proceedings of the National Academy of Sciences of the United States of America, 119(32): e2114799119. https://doi.org/10.1073/pnas.2114799119
|
Han, R. X., Lü, J. T., Zhang, S. H., et al., 2021. Hematite Facet-Mediated Microbial Dissimilatory Iron Reduction and Production of Reactive Oxygen Species during Aerobic Oxidation. Water Research, 195: 116988. https://doi.org/10.1016/j.watres.2021.116988
|
Han, X., Tomaszewski, E. J., Sorwat, J., et al., 2020. Oxidation of Green Rust by Anoxygenic Phototrophic Fe(Ⅱ)-Oxidising Bacteria. Geochemical Perspectives Letters, : 52-57. https://doi.org/10.7185/geochemlet.2004
|
Hansel, C. M., Ferdelman, T. G., Tebo, B. M., 2015b. Cryptic Cross-Linkages among Biogeochemical Cycles: Novel Insights from Reactive Intermediates. Elements, 11(6): 409-414. https://doi.org/10.2113/gselements.11.6.409
|
Hansel, C. M., Lentini, C. J., Tang, Y. Z., et al., 2015a. Dominance of Sulfur-Fueled Iron Oxide Reduction in Low-Sulfate Freshwater Sediments. The ISME Journal, 9(11): 2400-2412. https://doi.org/10.1038/ismej.2015.50
|
Hastrup, A. C. S., Jensen, T. Ø., Jensen, B., 2013. Detection of Iron-Chelating and Iron-Reducing Compounds in Four Brown Rot Fungi. Holzforschung, 67(1): 99-106. https://doi.org/10.1515/hf-2011-0152
|
Hedrich, S., Schlömann, M., Johnson, D. B., 2011. The Iron-Oxidizing Proteobacteria. Microbiology, 157(6): 1551-1564. https://doi.org/10.1099/mic.0.045344-0
|
Holmkvist, L., Ferdelman, T. G., Jørgensen, B. B., 2011. A Cryptic Sulfur Cycle Driven by Iron in the Methane Zone of Marine Sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta, 75(12): 3581-3599. https://doi.org/10.1016/j.gca.2011.03.033
|
Houghton, J. L., Foustoukos, D. I., Flynn, T. M., et al., 2016. Thiosulfate Oxidation by Thiomicrospira Thermophila: Metabolic Flexibility in Response to Ambient Geochemistry. Environmental Microbiology, 18(9): 3057-3072. https://doi.org/10.1111/1462-2920.13232
|
Hu, A. Y., Yao, T. D., Jiao, N. Z., et al., 2010. Community Structures of Ammonia-Oxidising Archaea and Bacteria in High-Altitude Lakes on the Tibetan Plateau. Freshwater Biology, 55(11): 2375-2390. https://doi.org/10.1111/j.1365-2427.2010.02454.x
|
Huang, J. R., Han, M. X., Yang, J., et al., 2022. Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(Ⅱ)-Oxidizing Microorganisms in Saline Lakes. Applied and Environmental Microbiology, 88(10): e00132-22. https://doi.org/10.1128/aem.00132-22
|
Huang, J., Yang, J., Jiang, H., et al., 2020. Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai-Tibetan Lakes. Frontiers in Microbiology, 11: 1772. https://doi.org/10.3389/fmicb.2020.01772
|
Huang, S., Jaffé, P. R., 2018. Isolation and Characterization of an Ammonium-Oxidizing Iron Reducer: Acidimicrobiaceae sp. A6. PLoS One, 13(4): e0194007. https://doi.org/10.1371/journal.pone.0194007
|
Ilbert, M., Bonnefoy, V., 2013. Insight into the Evolution of the Iron Oxidation Pathways. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827(2): 161-175. https://doi.org/10.1016/j.bbabio.2012.10.001
|
Itoh, T., Miura, T., Sakai, H. D., et al., 2020. Sulfuracidifex Tepidarius gen. nov., sp. nov. and Transfer of Sulfolobus Metallicus Huber and Stetter 1992 to the Genus Sulfuracidifex as Sulfuracidifex Metallicus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 70(3): 1837-1842. https://doi.org/10.1099/ijsem.0.003981
|
Ji, M. K., Kong, W. D., Yue, L. Y., et al., 2019. Salinity Reduces Bacterial Diversity, but Increases Network Complexity in Tibetan Plateau Lakes. FEMS Microbiology Ecology, 95(12): fiz190. https://doi.org/10.1093/femsec/fiz190
|
Jiang, H. C., Dong, H. L., Deng, S. C., et al., 2009. Response of Archaeal Community Structure to Environmental Changes in Lakes on the Tibetan Plateau, Northwestern China. Geomicrobiology Journal, 26(4): 289-297. https://doi.org/10.1080/01490450902892662
|
Jiang, H. C., Dong, H. L., Yu, B. S., et al., 2007. Microbial Response to Salinity Change in Lake Chaka, a Hypersaline Lake on Tibetan Plateau. Environmental Microbiology, 9(10): 2603-2621. https://doi.org/10.1111/j.1462-2920.2007.01377.x
|
Johnson, D. B., Joulian, C., d'Hugues, P., et al., 2008. Sulfobacillus Benefaciens sp. nov., an Acidophilic Facultative Anaerobic Firmicute Isolated from Mineral Bioleaching Operations. Extremophiles, 12(6): 789-798. https://doi.org/10.1007/s00792-008-0184-4
|
Jones, C., Nomosatryo, S., Crowe, S. A., et al., 2015. Iron Oxides, Divalent Cations, Silica, and the Early Earth Phosphorus Crisis. Geology, 43(2): 135-138. https://doi.org/10.1130/g36044.1
|
Jørgensen, B. B., Findlay, A. J., Pellerin, A., 2019. The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 10: 849. https://doi.org/10.3389/fmicb.2019.00849
|
Kappler, A., 2005. Geomicrobiological Cycling of Iron. Reviews in Mineralogy and Geochemistry, 59(1): 85-108. https://doi.org/10.2138/rmg.2005.59.5
|
Kappler, A., Bryce, C., Mansor, M., et al., 2021. An Evolving View on Biogeochemical Cycling of Iron. Nature Reviews Microbiology, 19(6): 360-374. https://doi.org/10.1038/s41579-020-00502-7
|
Kappler, A., Newman, D. K., 2004. Formation of Fe(Ⅲ)-Minerals by Fe(Ⅱ)-Oxidizing Photoautotrophic Bacteria. Geochimica et Cosmochimica Acta, 68(6): 1217-1226. https://doi.org/10.1016/j.gca.2003.09.006
|
Karvinen, A., Lehtinen, L., Kankaala, P., 2015. Variable Effects of Iron (Fe (Ⅲ)) Additions on Potential Methane Production in Boreal Lake Littoral Sediments. Wetlands, 35(1): 137-146. https://doi.org/10.1007/s13157-014-0602-6
|
Kato, S., Itoh, T., Yuki, M., et al., 2019. Isolation and Characterization of a Thermophilic Sulfur- and Iron-Reducing Thaumarchaeote from a Terrestrial Acidic Hot Spring. The ISME Journal, 13(10): 2465-2474. https://doi.org/10.1038/s41396-019-0447-3
|
Kinnunen, P. H. M., Robertson, W. J., Plumb, J. J., et al., 2003. The Isolation and Use of Iron-Oxidizing, Moderately Thermophilic Acidophiles from the Collie Coal Mine for the Generation of Ferric Iron Leaching Solution. Applied Microbiology and Biotechnology, 60(6): 748-753. https://doi.org/10.1007/s00253-002-1185-3
|
Knittel, K., Boetius, A., 2009. Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63: 311-334. https://doi.org/10.1146/annurev.micro.61.080706.093130
|
Kodama, Y., Watanabe, K., 2011. Rhizomicrobium Electricum sp. nov., a Facultatively Anaerobic, Fermentative, Prosthecate Bacterium Isolated from a Cellulose-Fed Microbial Fuel Cell. International Journal of Systematic and Evolutionary Microbiology, 61(Pt 8): 1781-1785. https://doi.org/10.1099/ijs.0.023580-0
|
Kojima, H., Watanabe, T., Iwata, T., et al., 2014. Identification of Major Planktonic Sulfur Oxidizers in Stratified Freshwater Lake. PLoS One, 9(4): e93877. https://doi.org/10.1371/journal.pone.0093877
|
Koretsky, C. M., Moore, C. M., Lowe, K. L., et al., 2003. Seasonal Oscillation of Microbial Iron and Sulfate Reduction in Saltmarsh Sediments (Sapelo Island, GA, USA). Biogeochemistry, 64(2): 179-203. https://doi.org/10.1023/A: 1024940132078 doi: 10.1023/A:1024940132078
|
Kozubal, M., Macur, R. E., Korf, S., et al., 2008. Isolation and Distribution of a Novel Iron-Oxidizing Crenarchaeon from Acidic Geothermal Springs in Yellowstone National Park. Applied and Environmental Microbiology, 74(4): 942-949. https://doi.org/10.1128/AEM.01200-07
|
Kulp, T. R., Hoeft, S. E., Miller, L. G., et al., 2006. Dissimilatory Arsenate and Sulfate Reduction in Sediments of Two Hypersaline, Arsenic-Rich Soda Lakes: Mono and Searles Lakes, California. Applied and Environmental Microbiology, 72(10): 6514-6526. https://doi.org/10.1128/aem.01066-06
|
Kunapuli, U., Jahn, M. K., Lueders, T., et al., 2010. Desulfitobacterium Aromaticivorans sp. nov. and Geobacter Toluenoxydans sp. nov., Iron-Reducing Bacteria Capable of Anaerobic Degradation of Monoaromatic Hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 60(3): 686-695. https://doi.org/10.1099/ijs.0.003525-0
|
Kwon, M. J., Boyanov, M. I., Antonopoulos, D. A., et al., 2014. Effects of Dissimilatory Sulfate Reduction on FeⅢ (Hydr)Oxide Reduction and Microbial Community Development. Geochimica et Cosmochimica Acta, 129: 177-190. https://doi.org/10.1016/j.gca.2013.09.037
|
Laso-Pérez, R., Wu, F. B., Crémière, A., et al., 2023. Evolutionary Diversification of Methanotrophic ANME-1 Archaea and Their Expansive Virome. Nature Microbiology, 8(2): 231-245. https://doi.org/10.1038/s41564-022-01297-4
|
Li, B., Tao, Y., Mao, Z. D., et al., 2023. Iron Oxides Act as an Alternative Electron Acceptor for Aerobic Methanotrophs in Anoxic Lake Sediments. Water Research, 234: 119833. https://doi.org/10.1016/j.watres.2023.119833
|
Li, X. S., Sato, T., Ooiwa, Y., et al., 2010. Oxidation of Elemental Sulfur by Fusarium Solani Strain THIF01 Harboring Endobacterium Bradyrhizobium sp. Microbial Ecology, 60(1): 96-104. https://doi.org/10.1007/s00248-010-9699-1
|
Li, X. Y., Yang, M. H., Mu, T. Z., et al., 2022. Composition and Key-Influencing Factors of Bacterial Communities Active in Sulfur Cycling of Soda Lake Sediments. Archives of Microbiology, 204(6): 317. https://doi.org/10.1007/s00203-022-02925-7
|
Liang, Z. W., Siegert, M., Fang, W. W., et al., 2018. Blackening and Odorization of Urban Rivers: A Bio-Geochemical Process. FEMS Microbiology Ecology, 94(3). https://doi.org/10.1093/femsec/fix180
|
Lien, T., Beeder, J., 1997. Desulfobacter Vibrioformis sp. nov., a Sulfate Reducer from a Water-Oil Separation System. International Journal of Systematic Bacteriology, 47(4): 1124-1128. https://doi.org/10.1099/00207713-47-4-1124
|
Lim, J. K., Kim, Y. J., Yang, J. A., et al., 2020. Thermococcus indicus sp. nov., a Fe(Ⅲ)-Reducing Hyperthermophilic Archaeon Isolated from the Onnuri Vent Field of the Central Indian Ocean Ridge. Journal of Microbiology, 58(4): 260-267. https://doi.org/10.1007/s12275-020-9424-9
|
Lin, C. F., Larsen, E. I., Nothdurft, L. D., et al., 2012. Neutrophilic, Microaerophilic Fe(Ⅱ)-Oxidizing Bacteria Are Ubiquitous in Aquatic Habitats of a Subtropical Australian Coastal Catchment (Ubiquitous FeOB in Catchment Aquatic Habitats). Geomicrobiology Journal, 29(1): 76-87. https://doi.org/10.1080/01490451.2010.523446
|
Liu, C., Zhu, L. P., Wang, J. B., et al., 2021. In-Situ Water Quality Investigation of the Lakes on the Tibetan Plateau. Science Bulletin, 66(17): 1727-1730. https://doi.org/10.1016/j.scib.2021.04.024
|
Liu, L. J., You, X. Y., Zheng, H. J., et al., 2011. Complete Genome Sequence of Metallosphaera Cuprina, a Metal Sulfide-Oxidizing Archaeon from a Hot Spring. Journal of Bacteriology, 193(13): 3387-3388. https://doi.org/10.1128/JB.05038-11
|
Liu, P. F., Pommerenke, B., Conrad, R., 2018. Identification of Syntrophobacteraceae as Major Acetate-Degrading Sulfate Reducing Bacteria in Italian Paddy Soil. Environmental Microbiology, 20(1): 337-354. https://doi.org/10.1111/1462-2920.14001
|
Liu, Q., Yang, J., Wang, B. C., et al., 2022. Influence of Salinity on the Diversity and Composition of Carbohydrate Metabolism, Nitrogen and Sulfur Cycling Genes in Lake Surface Sediments. Frontiers in Microbiology, 13: 1019010. https://doi.org/10.3389/fmicb.2022.1019010
|
Liu, T. X., Chen, D. D., Li, X. M., et al., 2019. Microbially Mediated Coupling of Nitrate Reduction and Fe(Ⅱ) Oxidation under Anoxic Conditions. FEMS Microbiology Ecology, 95(4): fiz030. https://doi.org/10.1093/femsec/fiz030
|
Lohmayer, R., Kappler, A., Lösekann-Behrens, T., et al., 2014. Sulfur Species as Redox Partners and Electron Shuttles for Ferrihydrite Reduction by Sulfurospirillum Deleyianum. Applied and Environmental Microbiology, 80(10): 3141-3149. https://doi.org/10.1128/AEM.04220-13
|
Lovley, D. R., 1991. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) Reduction. Microbiological Reviews, 55(2): 259-287. https://doi.org/10.1128/mr.55.2.259-287.1991
|
Lovley, D. R., 2012. Electromicrobiology. Annual Review of Microbiology, 66: 391-409. https://doi.org/10.1146/annurev-micro-092611-150104
|
Lovley, D. R., Giovannoni, S. J., White, D. C., et al., 1993. Geobacter Metallireducens gen. nov. sp. nov., a Microorganism Capable of Coupling the Complete Oxidation of Organic Compounds to the Reduction of Iron and Other Metals. Archives of Microbiology, 159(4): 336-344. https://doi.org/10.1007/BF00290916
|
Lovley, D. R., Holmes, D. E., Nevin, K. P., 2004. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) Reduction. Advances in Microbial Physiology. 49: 219-286. https://doi.org/10.1016/s0065-2911(04)49005-5
|
Lovley, D. R., Phillips, E. J. P., 1988b. Manganese Inhibition of Microbial Iron Reduction in Anaerobic Sediments. Geomicrobiology Journal, 6(3-4): 145-155. https://doi.org/10.1080/01490458809377834
|
Lovley, D. R., Phillips, E. J., 1987. Competitive Mechanisms for Inhibition of Sulfate Reduction and Methane Production in the Zone of Ferric Iron Reduction in Sediments. Applied and Environmental Microbiology, 53(11): 2636-2641. https://doi.org/10.1128/aem.53.11.2636-2641.1987
|
Lovley, D. R., Phillips, E. J., 1988a. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Applied and Environmental Microbiology, 54(6): 1472-1480. https://doi.org/10.1128/aem.54.6.1472-1480.1988
|
Lovley, D. R., Stolz, J. F., Nord, G. L., et al., 1987. Anaerobic Production of Magnetite by a Dissimilatory Iron-Reducing Microorganism. Nature, 330: 252-254. https://doi.org/10.1038/330252a0
|
Luu, Y. S., Ramsay, J. A., 2003. Review: Microbial Mechanisms of Accessing Insoluble Fe(Ⅲ) as an Energy Source. World Journal of Microbiology and Biotechnology, 19(2): 215-225. https://doi.org/10.1023/A: 1023225521311 doi: 10.1023/A:1023225521311
|
Ma, J. L., Ma, C., Tang, J., et al., 2015. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer. Progress in Chemistry, 27(12): 1833-1840 (in Chinese with English abstract).
|
Malik, L., Hedrich, S., 2022. Ferric Iron Reduction in Extreme Acidophiles. Frontiers in Microbiology, 12: 818414. https://doi.org/10.3389/fmicb.2021.818414
|
McAllister, S. M., Moore, R. M., Gartman, A., et al., 2019. The Fe(Ⅱ)-Oxidizing Zetaproteobacteria: Historical, Ecological and Genomic Perspectives. FEMS Microbiology Ecology, 95(4): fiz015. https://doi.org/10.1093/femsec/fiz015
|
Micciche, A. C., Barabote, R. D., Dittoe, D. K., et al., 2020. In Silico Genome Analysis of an Acid Mine Drainage Species, Acidiphilium Multivorum, for Potential Commercial Acetic Acid Production and Biomining. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 55(5): 447-454. https://doi.org/10.1080/03601234.2019.1710985
|
Mills, J. V., Antler, G., Turchyn, A. V., 2016. Geochemical Evidence for Cryptic Sulfur Cycling in Salt Marsh Sediments. Earth and Planetary Science Letters, 453: 23-32. https://doi.org/10.1016/j.epsl.2016.08.001
|
Mort, H. P., Slomp, C. P., Gustafsson, B. G., et al., 2010. Phosphorus Recycling and Burial in Baltic Sea Sediments with Contrasting Redox Conditions. Geochimica et Cosmochimica Acta, 74(4): 1350-1362. https://doi.org/10.1016/j.gca.2009.11.016
|
Muyzer, G., Stams, A. J. M., 2008. The Ecology and Biotechnology of Sulphate-Reducing Bacteria. Nature Reviews Microbiology, 6(6): 441-454. https://doi.org/10.1038/nrmicro1892
|
Myers, C. R., Nealson, K. H., 1988. Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor. Science, 240(4857): 1319-1321. https://doi.org/10.1126/science.240.4857.1319
|
Nair, A., Juwarkar, A. A., Singh, S. K., 2007. Production and Characterization of Siderophores and Its Application in Arsenic Removal from Contaminated Soil. Water, Air, and Soil Pollution, 180(1): 199-212. https://doi.org/10.1007/s11270-006-9263-2
|
Nevin, K. P., Lovley, D. R., 2002. Mechanisms for Accessing Insoluble Fe(Ⅲ) Oxide during Dissimilatory Fe(Ⅲ) Reduction by Geothrix Fermentans. Applied and Environmental Microbiology, 68(5): 2294-2299. https://doi.org/10.1128/AEM.68.5.2294-2299.2002
|
Nilsen, R. K., Torsvik, T., Lien, T., 1996. Desulfotomaculum Thermocisternum sp. nov., a Sulfate Reducer Isolated from a Hot North Sea Oil Reservoir. International Journal of Systematic Bacteriology, 46(2): 397-402. https://doi.org/10.1099/00207713-46-2-397
|
Nosalova, L., Kiskova, J., Fecskeova, L. K., et al., 2023. Bacterial Community Structure of Two Cold Sulfur Springs in Slovakia (Central Europe). Current Microbiology, 80(5): 145. https://doi.org/10.1007/s00284-023-03251-x
|
Okibe, N., Gericke, M., Hallberg, K. B., et al., 2003. Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation. Applied and Environmental Microbiology, 69(4): 1936-1943. https://doi.org/10.1128/AEM.69.4.1936-1943.2003
|
Pan, C., Giammar, D., 2020. Interplay of Transport Processes and Interfacial Chemistry Affecting Chromium Reduction and Reoxidation with Iron and Manganese. Frontiers of Environmental Science & Engineering, 14(5): 81. https://doi.org/10.1007/s11783-020-1260-y
|
Panova, I. A., Grigoriev, M. A., Glukhova, L. B., et al., 2021. Isolation of a Novel Chemolithothrophic Sulfate-Reducing Firmicute from a Tyumen Thermal Borehole. Microbiology, 90(3): 397-400. https://doi.org/10.1134/S0026261721030097
|
Park, H. S., Kim, B. H., Kim, H. S., et al., 2001. A Novel Electrochemically Active and Fe(Ⅲ)-Reducing Bacterium Phylogenetically Related to Clostridium Butyricum Isolated from a Microbial Fuel Cell. Anaerobe, 7(6): 297-306. https://doi.org/10.1006/anae.2001.0399
|
Park, S. J., Ghai, R., Martín-Cuadrado, A. B., et al., 2012. Draft Genome Sequence of the Sulfur-Oxidizing Bacterium "Candidatus Sulfurovum Sediminum" AR, Which Belongs to the Epsilonproteobacteria. Journal of Bacteriology, 194(15): 4128-4129. https://doi.org/10.1128/JB.00741-12
|
Patzner, M. S., Mueller, C. W., Malusova, M., et al., 2020. Iron Mineral Dissolution Releases Iron and Associated Organic Carbon during Permafrost Thaw. Nature Communications, 11(1): 6329. https://doi.org/10.1038/s41467-020-20102-6
|
Peng, C., Bryce, C., Sundman, A., et al., 2019. Cryptic Cycling of Complexes Containing Fe(Ⅲ) and Organic Matter by Phototrophic Fe(Ⅱ)-Oxidizing Bacteria. Applied and Environmental Microbiology, 85(8): e02826-18. https://doi.org/10.1128/aem.02826-18
|
Pereira, I. A., Ramos, A. R., Grein, F., et al., 2011. A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea. Frontiers in Microbiology, 2: 69. https://doi.org/10.3389/fmicb.2011.00069
|
Picardal, F. W., Zaybak, Z., Chakraborty, A., et al., 2011. Microaerophilic, Fe(Ⅱ)-Dependent Growth and Fe(Ⅱ) Oxidation by a Dechlorospirillum Species. FEMS Microbiology Letters, 319(1): 51-57. https://doi.org/10.1111/j.1574-6968.2011.02265.x
|
Pokorna, D., Zabranska, J., 2015. Sulfur-Oxidizing Bacteria in Environmental Technology. Biotechnology Advances, 33(6): 1246-1259. https://doi.org/10.1016/j.biotechadv.2015.02.007
|
Pollock, J., Weber, K. A., Lack, J., et al., 2007. Alkaline Iron(Ⅲ) Reduction by a Novel Alkaliphilic, Halotolerant, Bacillus sp. Isolated from Salt Flat Sediments of Soap Lake. Applied Microbiology and Biotechnology, 77(4): 927-934. https://doi.org/10.1007/s00253-007-1220-5
|
Poulton, S. W., Canfield, D. E., 2005. Development of a Sequential Extraction Procedure for Iron: Implications for Iron Partitioning in Continentally Derived Particulates. Chemical Geology, 214(3-4): 209-221. https://doi.org/10.1016/j.chemgeo.2004.09.003
|
Qin, H. Y., Wang, S., Feng, K., et al., 2019. Unraveling the Diversity of Sedimentary Sulfate-Reducing Prokaryotes (SRP) across Tibetan Saline Lakes Using epicPCR. Microbiome, 7(1): 71. https://doi.org/10.1186/s40168-019-0688-4
|
Qu, D., Sylvia, S., 2001. Mocrobial Reduction Ability of Various Iron Oxides in Pure Culture Experiment. Acta Microbiologica Sinica, 41(6): 745-749 (in Chinese with English abstract).
|
Raiswell, R., Canfield, D. E., 1998. Sources of Iron for Pyrite Formation in Marine Sediments. American Journal of Science, 298(3): 219-245. https://doi.org/10.2475/ajs.298.3.219
|
Rameez, M. J., Pyne, P., Mandal, S., et al., 2020. Two Pathways for Thiosulfate Oxidation in the Alphaproteobacterial Chemolithotroph Paracoccus Thiocyanatus SST. Microbiological Research, 230: 126345. https://doi.org/10.1016/j.micres.2019.126345
|
Reguera, G., 2018. Microbial Nanowires and Electroactive Biofilms. FEMS Microbiology Ecology, 94(7) https://doi.org/10.1093/femsec/fiy086
|
Rickard, D., Luther, G. W., 1997. Kinetics of Pyrite Formation by the H2S Oxidation of Iron (Ⅱ) Monosulfide in Aqueous Solutions between 25 and 125 ℃: The Mechanism. Geochimica et Cosmochimica Acta, 61(1): 135-147. https://doi.org/10.1016/S0016-7037(96)00322-5
|
Roden, E. E., Zachara, J. M., 1996. Microbial Reduction of Crystalline Iron(Ⅲ) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth. Environmental Science & Technology, 30(5): 1618-1628. https://doi.org/10.1021/es9506216
|
Rohwerder, T., Sand, W., 2007. Oxidation of Inorganic Sulfur Compounds in Acidophilic Prokaryotes. Engineering in Life Sciences, 7(4): 301-309. https://doi.org/10.1002/elsc.200720204
|
Sakurai, H., Ogawa, T., Shiga, M., et al., 2010. Inorganic Sulfur Oxidizing System in Green Sulfur Bacteria. Photosynthesis Research, 104(2-3): 163-176. https://doi.org/10.1007/s11120-010-9531-2
|
Sander, J., Dahl, C., 2009. Metabolism of Inorganic Sulfur Compounds in Purple Bacteria. In: Hunter, C. N., Daldal, F., Thurnauer, M. C., eds., Advances in Photosynthesis and Respiration. Springer, Dordrecht.
|
Sattley, W. M., Madigan, M. T., 2006. Isolation, Characterization, and Ecology of Cold-Active, Chemolithotrophic, Sulfur-Oxidizing Bacteria from Perennially Ice-Covered Lake Fryxell, Antarctica. Applied and Environmental Microbiology, 72(8): 5562-5568. https://doi.org/10.1128/AEM.00702-06
|
Schoenberg, S. A., Benner, R., Sobecky, P., et al., 1988. Adaptation of Phytoplankton-Degrading Microbial Communities to Thermal Reactor Effluent in a New Cooling Reservoir. Applied and Environmental Microbiology, 54(6): 1481-1487. https://doi.org/10.1128/aem.54.6.1481-1487.1988
|
Shi, M. G., Ding, J., Liu, X. F., et al., 2019b. Mechanisms of Sulfite Oxidation in Sulfite-Nitrite Mixed Solutions. Atmospheric Pollution Research, 10(2): 412-417. https://doi.org/10.1016/j.apr.2018.08.010
|
Shi, M. M., Jiang, Y. G., Shi, L., 2019a. Electromicrobiology and Biotechnological Applications of the Exoelectrogens Geobacter and Shewanella spp. Science China Technological Sciences, 62(10): 1670-1678. https://doi.org/10.1007/s11431-019-9509-8
|
Slobodkina, G. B., Lebedinsky, A. V., Chernyh, N. A., et al., 2015. Pyrobaculum Ferrireducens sp. nov., a Hyperthermophilic Fe(Ⅲ)-, Selenate- and Arsenate-Reducing Crenarchaeon Isolated from a Hot Spring. International Journal of Systematic and Evolutionary Microbiology, 65(3): 851-856. https://doi.org/10.1099/ijs.0.000027
|
Sorokin, D. Y., Kuenen, J. G., Muyzer, G., 2011. The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes. Frontiers in Microbiology, 2: 44. https://doi.org/10.3389/fmicb.2011.00044
|
Sousa, F. M., Pereira, J. G., Marreiros, B. C., et al., 2018. Taxonomic Distribution, Structure/Function Relationship and Metabolic Context of the Two Families of Sulfide Dehydrogenases: SQR and FCSD. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1859(9): 742-753. https://doi.org/10.1016/j.bbabio.2018.04.004
|
Sunda, W., Huntsman, S., 2003. Effect of pH, Light, and Temperature on Fe-EDTA Chelation and Fe Hydrolysis in Seawater. Marine Chemistry, 84(1-2): 35-47. https://doi.org/10.1016/S0304-4203(03)00101-4
|
Suzuki, D., Ueki, A., Amaishi, A., et al., 2007. Diversity of Substrate Utilization and Growth Characteristics of Sulfate-Reducing Bacteria Isolated from Estuarine Sediment in Japan. The Journal of General and Applied Microbiology, 53(2): 119-132. https://doi.org/10.2323/jgam.53.119
|
Tan, S., Liu, J., Fang, Y., et al., 2019. Insights into Ecological Role of a New Deltaproteobacterial Order Candidatus Acidulodesulfobacterales by Metagenomics and Metatranscriptomics. The ISME Journal, 13(8): 2044-2057. https://doi.org/10.1038/s41396-019-0415-y
|
Tong, H., Li, J. H., Chen, M. J., et al., 2023. Iron Oxidation Coupled with Nitrate Reduction Affects the Acetate-Assimilating Microbial Community Structure Elucidated by Stable Isotope Probing in Flooded Paddy Soil. Soil Biology and Biochemistry, 183: 109059. https://doi.org/10.1016/j.soilbio.2023.109059
|
van Houten, B. H. G. W., Meulepas, R. J. W., van Doesburg, W., et al., 2009. Desulfovibrio Paquesii sp. nov., a Hydrogenotrophic Sulfate-Reducing Bacterium Isolated from a Synthesis-Gas-Fed Bioreactor Treating Zinc- and Sulfate-Rich Wastewater. International Journal of Systematic and Evolutionary Microbiology, 59(2): 229-233. https://doi.org/10.1099/ijs.0.65616-0
|
Verté, F., Kostanjevecki, V., De Smet, L., et al., 2002. Identification of a Thiosulfate Utilization Gene Cluster from the Green Phototrophic Bacterium Chlorobium Limicola. Biochemistry, 41(9): 2932-2945. https://doi.org/10.1021/bi011404m
|
von Canstein, H., Ogawa, J., Shimizu, S., et al., 2008. Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer. Applied and Environmental Microbiology, 74(3): 615-623. https://doi.org/10.1128/AEM.01387-07
|
Voordouw, G., 2002. Carbon Monoxide Cycling by Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology, 184(21): 5903-5911. https://doi.org/10.1128/jb.184.21.5903-5911.2002
|
Waksman, S. A., 1922. Microörganisms Concerned in the Oxidation of Sulfur in the Soil: Ⅳ. a Solid Medium for the Isolation and Cultivation of Thiobacillus Thiooxidans. Journal of Bacteriology, 7(6): 605-608. https://doi.org/10.1128/jb.7.6.605-608.1922
|
Wang, D., Huang, Y., Zhang, S., et al., 2022a. Differences in Bacterial Diversity, Composition, and Community Networks in Lake Water across Three Distinct Regions on the Qinghai-Tibet Plateau. Frontiers in Environmental Science, 10. https://doi.org /10.3389/fenvs.2022.1033160
|
Wang, F., Li, A. N., Dai, D. M., et al., 2013. A New Halotolerant Species of Alternaria from Qinghai-Tibet Plateau, China. Mycotaxon, 123(1): 251-253. https://doi.org/10.5248/123.251
|
Wang, G. W., Chen, T. H., Yue, Z. B., et al., 2014. Isolation and Characterization of Pseudomonas Stutzeri Capable of Reducing Fe(Ⅲ) and Nitrate from Skarn-Type Copper Mine Tailings. Geomicrobiology Journal, 31(6): 509-518. https://doi.org/10.1080/01490451.2013.847992
|
Wang, X. J., Chen, X. P., Kappler, A., et al., 2009. Arsenic Binding to Iron(Ⅱ) Minerals Produced by an Iron(Ⅲ)-Reducing Aeromonas Strain Isolated from Paddy Soil. Environmental Toxicology and Chemistry, 28(11): 2255-2262. https://doi.org/10.1897/09-085.1
|
Wang, X. Z., Cheng, X., Ren, Y. W., et al., 2016. Humic Analog AQDS Can Act as a Selective Inhibitor to Enable Anoxygenic Photosynthetic Bacteria to Outcompete Sulfate-Reducing Bacteria under Microaerobic Conditions. Journal of Chemical Technology & Biotechnology, 91(7): 2103-2110. https://doi.org/10.1002/jctb.4808
|
Wang, Y. X., Wu, Y., Zhang, H. L., et al., 2022. Microbial Sulfur Metabolism and the Bioecological Relationships Driven by Sulfur Metabolism. Acta Microbiologica Sinica, 62(3): 930-948 (in Chinese with English abstract).
|
Wang, Y., Bi, H. Y., Chen, H. G., et al., 2022b. Metagenomics Reveals Dominant Unusual Sulfur Oxidizers Inhabiting Active Hydrothermal Chimneys from the Southwest Indian Ridge. Frontiers in Microbiology, 13: 861795. https://doi.org/10.3389/fmicb.2022.861795
|
Widdel, F., Schnell, S., Heising, S., et al., 1993. Ferrous Iron Oxidation by Anoxygenic Phototrophic Bacteria. Nature, 362: 834-836. https://doi.org/10.1038/362834a0
|
Wind, T., Stubner, S., Conrad, R., 1999. Sulfate-Reducing Bacteria in Rice Field Soil and on Rice Roots. Systematic and Applied Microbiology, 22(2): 269-279. https://doi.org/10.1016/S0723-2020(99)80074-5
|
Wrighton, K. C., Thrash, J. C., Melnyk, R. A., et al., 2011. Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell. Applied and Environmental Microbiology, 77(21): 7633-7639. https://doi.org/10.1128/AEM.05365-11
|
Wu, B., Liu, F. F., Fang, W. W., et al., 2021. Microbial Sulfur Metabolism and Environmental Implications. Science of the Total Environment, 778: 146085. https://doi.org/10.1016/j.scitotenv.2021.146085
|
Wu, Q. L., Zwart, G., Schauer, M., et al., 2006. Bacterioplankton Community Composition along a Salinity Gradient of Sixteen High-Mountain Lakes Located on the Tibetan Plateau, China. Applied and Environmental Microbiology, 72(8): 5478-5485. https://doi.org/10.1128/AEM.00767-06
|
Wu, S. J., Zhao, Y. P., Chen, Y. Y., et al., 2019. Sulfur Cycling in Freshwater Sediments: A Cryptic Driving Force of Iron Deposition and Phosphorus Mobilization. Science of the Total Environment, 657: 1294-1303. https://doi.org/10.1016/j.scitotenv.2018.12.161
|
Wu, Y. D., Li, F. B., Liu, T. X., 2016. Mechanism of Extracellular Electron Transfer among Microbe-Humus-Mineral in Soil: A Review. Acta Pedologica Sinica, 53(2): 277-291 (in Chinese with English abstract).
|
Xing, P., Hu, W. T., Wu, Y. F., et al., 2015. Major Progress in Microbial Ecology of Hypoxia in the Shallow Eutrophic Lakes. Journal of Lake Sciences, 27(4): 567-574 (in Chinese with English abstract). doi: 10.18307/2015.0402
|
Xing, P., Tao, Y., Jeppesen, E., et al., 2021. Comparing Microbial Composition and Diversity in Freshwater Lakes between Greenland and the Tibetan Plateau. Limnology and Oceanography, 66(S1): S142-S156. https://doi.org/10.1002/lno.11686
|
Xu, X. W., Wu, Y. H., Zhang, H., et al., 2007. Halorubrum arcis sp. nov. , an Extremely Halophilic Archaeon Isolated from a Saline Lake on the Qinghai-Tibet Plateau. International Journal of Systematic and Evolutionary Microbiology, 57(5): 1069-1072. https://doi.org/10.1099/ijs.0.64921-0
|
Yan, Q., Song, J. T., Zhou, J., et al., 2022. Biodeposition of Oysters in an Urbanized Bay Area Alleviates the Black-Malodorous Compounds in Sediments by Altering Microbial Sulfur and Iron Metabolism. Science of the Total Environment, 817: 152891. https://doi.org/10.1016/j.scitotenv.2021.152891
|
Yang, J., Jiang, H. C., Dong, H. L., et al., 2013a. Abundance and Diversity of Sulfur-Oxidizing Bacteria along a Salinity Gradient in Four Qinghai-Tibetan Lakes, China. Geomicrobiology Journal, 30(9): 851-860. https://doi.org/10.1080/01490451.2013.790921
|
Yang, J., Jiang, H. C., Dong, H. L., et al., 2013b. Diversity of Carbon Monoxide-Oxidizing Bacteria in Five Lakes on the Qinghai-Tibet Plateau, China. Geomicrobiology Journal, 30(8): 758-767. https://doi.org/10.1080/01490451.2013.769652
|
Yang, W. B., Tang, H., Han, C., et al., 2016. Distribution of Iron Forms and Their Correlations Analysis with Phosphorus Forms in the Sedimentary Profiles of Taihu Lake. China Environmental Science, 36(4): 1145-1156 (in Chinese with English abstract).
|
Yang, Z. D., Liu, Z. H., Dabrowska, M., et al., 2021. Biostimulation of Sulfate-Reducing Bacteria Used for Treatment of Hydrometallurgical Waste by Secondary Metabolites of Urea Decomposition by Ochrobactrum sp. POC9: From Genome to Microbiome Analysis. Chemosphere, 282: 131064. https://doi.org/10.1016/j.chemosphere.2021.131064
|
Ye, Q., Roh, Y., Carroll, S. L., et al., 2004. Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium. Applied and Environmental Microbiology, 70(9): 5595-5602. https://doi.org/10.1128/AEM.70.9.5595-5602.2004
|
Yi, W. J., You, J. H., Zhu, C., et al., 2013. Diversity, Dynamic and Abundance of Geobacteraceae Species in Paddy Soil Following Slurry Incubation. European Journal of Soil Biology, 56: 11-18. https://doi.org/10.1016/j.ejsobi.2013.01.004
|
Zavarzina, D. G., Sokolova, T. G., Tourova, T. P., et al., 2007. Thermincola Ferriacetica sp. nov., a New Anaerobic, Thermophilic, Facultatively Chemolithoautotrophic Bacterium Capable of Dissimilatory Fe(Ⅲ) Reduction. Extremophiles, 11(1): 1-7. https://doi.org/10.1007/s00792-006-0004-7
|
Zeng, Q., Hao, T. W., MacKey, H. R., et al., 2019. Recent Advances in Dissimilatory Sulfate Reduction: From Metabolic Study to Application. Water Research, 150: 162-181. https://doi.org/10.1016/j.watres.2018.11.018
|
Zeng, X., Zhang, Z., Li, X., et al., 2015. Anoxybacter Fermentans gen. nov., sp. nov., a Piezophilic, Thermophilic, Anaerobic, Fermentative Bacterium Isolated from a Deep-sea Hydrothermal Vent. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_2): 710-715. https://doi.org/10.1099/ijs.0.068221-0
|
Zhao, B. H., Jiao, C. C., Wang, S. R., et al., 2022. Contrasting Assembly Mechanisms Explain the Biogeographic Patterns of Benthic Bacterial and Fungal Communities on the Tibetan Plateau. Environmental Research, 214: 113836. https://doi.org/10.1016/j.envres.2022.113836
|
Zheng, M. P., Liu, X. F., 2010. Hydrochemistry and Minerals Assemblages of Salt Lakes in the Qinghai-Tibet Plateau, China. Acta Geologica Sinica, 84(11): 1585-1600 (in Chinese with English abstract).
|
Zhou, C., Miao, T., Jiang, L., et al., 2021. Conditions that Promote the Formation of Black Bloom in Aquatic Microcosms and Its Effects on Sediment Bacteria Related to Iron and Sulfur Cycling. Science of the Total Environment, 751: 141869. https://doi.org/10.1016/j.scitotenv.2020.141869
|
陈俊松, 杨渐, 蒋宏忱, 2020. 湖泊硫循环微生物研究进展. 微生物学报, 60(6): 1177-1191.
|
马金莲, 马晨, 汤佳, 等, 2015. 电子穿梭体介导的微生物胞外电子传递: 机制及应用. 化学进展, 27(12): 1833-1840.
|
曲东, Sylvia, S., 2001. 纯培养条件下不同氧化铁的微生物还原能力. 微生物学报, 41(6): 745-749.
|
王亚鑫, 吴玉, 张洪琳, 等, 2022. 微生物硫代谢及其驱动下建立的生物生态关系. 微生物学报, 62(3): 930-948.
|
吴云当, 李芳柏, 刘同旭, 2016. 土壤微生物‒腐殖质‒矿物间的胞外电子传递机制研究进展. 土壤学报, 53(2): 277-291.
|
邢鹏, 胡万婷, 吴瑜凡, 等, 2015. 浅水湖泊湖泛(黑水团)中的微生物生态学研究进展. 湖泊科学, 27(4): 567-574.
|
杨文斌, 唐皓, 韩超, 等, 2016. 太湖沉积物铁形态分布特征及磷铁相关性分析. 中国环境科学, 36(4): 1145-1156.
|
郑绵平, 刘喜方, 2010. 青藏高原盐湖水化学及其矿物组合特征. 地质学报, 84(11): 1585-1600.
|