• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Gao Yufei, Li Xin, Zhou Shanshan, Wang Shiqi, 2024. Effective Characteristics and Main Controlling Factors of Tight Gas Reservoirs in Southern Shenfu area. Earth Science, 49(12): 4518-4529. doi: 10.3799/dqkx.2024.065
    Citation: Gao Yufei, Li Xin, Zhou Shanshan, Wang Shiqi, 2024. Effective Characteristics and Main Controlling Factors of Tight Gas Reservoirs in Southern Shenfu area. Earth Science, 49(12): 4518-4529. doi: 10.3799/dqkx.2024.065

    Effective Characteristics and Main Controlling Factors of Tight Gas Reservoirs in Southern Shenfu area

    doi: 10.3799/dqkx.2024.065
    • Received Date: 2023-12-09
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • Tight gas reservoir heterogeneity is strong and the effective reservoir prediction is difficult. In this paper, the main gas-producing layers within Carboniferous-Permian Formation in the southern Shenfu area were taken as the research object. The effective characteristics and the main controlling factors of effective reservoirs were studied by means of thin section observation, physical property test, mercury injection experiment and productivity analysis. The results show that the reservoirs are mainly composed of lithic sandstone and feldspar lithic sandstone with low porosity and permeability. Combined with productivity, the lower limit of reservoir physical properties can be manifest as 7% porosity and 0.1 mD permeability. Mercury intrusion-fractal characterization shows that the effective reservoir pores are mainly distributed in the range of 750-3 900 nm, accounting for more than 50%, corresponding to the dissolution pores. However, the tight reservoir pores are concentrated in the range of 0-80 nm, accounting for more than 80%, corresponding to the clay intercrystalline pores. The effectiveness of underwater distributary channel accounts for more than 70%, which is a high-energy facies belt for effective reservoir development, and can be proven by sorting and particle size analysis. The pore type is mainly the dissolution pore with secondary origin, accounting for more than 85%. Generally, the dissolution pore formed after the dissolution of feldspar by organic acids in the late diagenesis stage. The larger the amount of feldspar dissolution, the higher the porosity and permeability. Based on the above analysis, the coupling of high-energy microfacies and secondary dissolution is the main controlling factor of effective reservoir development.

       

    • loading
    • Ajdukiewicz, J. M., Larese, R. E., 2012. How Clay Grain Coats Inhibit Quartz Cement and Preserve Porosity in Deeply Buried Sandstones: Observations and Experiments. AAPG Bulletin, 96(11): 2091-2119. https://doi.org/10.1306/02211211075
      Bjørlykke, K., 2014. Relationships between Depositional Environments, Burial History and Rock Properties. Some Principal Aspects of Diagenetic Process in Sedimentary Basins. Sedimentary Geology, 301: 1-14. https://doi.org/10.1016/j.sedgeo.2013.12.002
      Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer during Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193-2214. https://doi.org/10.1306/04301211139
      British Petroleum Company, 2011. BP Statistical Review of World Energy 2011. British Petroleum Company, London.
      Chen, H., Zhu, X., Chen, C., et al., 2017. Diagenesis and Hydrocarbon Emplacement in the Upper Triassic Yanchang Formation Tight Sandstones in the Southern Ordos Basin, China. Australian Journal of Earth Sciences, 64(7): 957-980. https://doi.org/10.1080/08120099.2017.1375983
      Guo, C. H., Zhou, W., Lin, F., et al., 2014. Fractal Characteristics of Capillary Pressure Curve in Shale Gas Reservoir. Journal of Chengdu University of Technology (Science & Technology Edition), 41(6): 773-777(in Chinese with English abstract).
      Jia, C. Z., Zheng, M., Zhang, Y. F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136(in Chinese with English abstract).
      Li, J. Q., Liu, D. M., Yao, Y. B., et al., 2013. Physical Characterization of the Pore⁃Fracture System in Coals, Northeastern China. Energy Exploration & Exploitation, 31(2): 267-285. https://doi.org/10.1260/0144⁃5987.31.2.267
      Lu, S. F., Li, J. Q., Zhang, P. F., et al., 2018. Classification of Microscopic Pore⁃Throats and the Grading Evaluation on Shale Oil Reservoirs. Petroleum Exploration and Development, 45(3): 436-444(in Chinese with English abstract).
      Mansurbeg, H., Morad, S., Salem, A., et al., 2008. Diagenesis and Reservoir Quality Evolution of Palaeocene Deep⁃Water, Marine Sandstones, the Shetland⁃Faroes Basin, British Continental Shelf. Marine and Petroleum Geology, 25(6): 514-543. https://doi.org/10.1016/j.marpetgeo.2007.07.012
      Morad, S., Al⁃Ramadan, K., Ketzer, J. M., et al., 2010. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A Review of the Role of Depositional Facies and Sequence Stratigraphy. AAPG Bulletin, 94(8): 1267-1309. https://doi.org/10.1306/04211009178
      Pan, R., Zhu, X. M., Wang, X. X., et al., 2014. Advancement on Formation Mechanism of Deep Effective Clastic Reservoir. Lithologic Reservoirs, 26(4): 73-80(in Chinese with English abstract).
      Surdam, R. C., Jiao, Z. S., Martinsen, R. S., 1994. The Regional Pressure Regime in Cretaceous Sandstones and Shales in the Powder River Basin. In: Ortoleva, P. J., ed., Basin Compartments and Seals. American Association of Petroleum Geologists, U. S. A. . https://doi.org/10.1306/m61588c15
      Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273-283. https://doi.org/10.1103/PhysRev.17.273
      Yang, R. C., Fan, A. P., van Loon, A. J., et al., 2014. Depositional and Diagenetic Controls on Sandstone Reservoirs with Low Porosity and Low Permeability in the Eastern Sulige Gas Field, China. Acta Geologica Sinica, 88(5): 1513-1534. https://doi.org/10.1111/1755⁃6724.12315
      Yuan, G. H., Cao, Y. C., Jia, Z. Z., et al., 2015. Research Progress on Anomalously High Porosity Zones in Deeply Buried Clastic Reservoirs in Petroliferous Basin. Natural Gas Geoscience, 26(1): 28-42(in Chinese with English abstract).
      Zhang, P. F., Lu, S. F., Li, J. Q., et al., 2017. Characterization of Shale Pore System: A Case Study of Paleogene Xin'gouzui Formation in the Jianghan Basin, China. Marine and Petroleum Geology, 79: 321-334. https://doi.org/10.1016/j.marpetgeo.2016.10.014
      Zhao, J. Z., 2012. Conception, Classification and Resource Potential of Unconventional Hydrocarbons. Natural Gas Geoscience, 23(3): 393-406(in Chinese with English abstract).
      Zhou, X., He, S., Liu, P., et al., 2016. Characteristics and Classification of Tight Oil Pore Structure in Reservoir Chang 6 of Daijiaping Area, Ordos Basin. Earth Science Frontiers, 23(3): 253-265(in Chinese with English abstract).
      Zhou, Y., Ji, Y. L., Xu, L. M., et al., 2016. Controls on Reservoir Heterogeneity of Tight Sand Oil Reservoirs in Upper Triassic Yanchang Formation in Longdong Area, Southwest Ordos Basin, China: Implications for Reservoir Quality Prediction and Oil Accumulation. Marine and Petroleum Geology, 78: 110-135. https://doi.org/10.1016/j.marpetgeo.2016.09.006
      Zhu, R. J., Li, R. X., Liu, X. S., et al., 2021. Characteristics of the Diagenetic Evolution of Tight Sandstone Gas Reservoir and Its Property in the Upper Paleozoic Erathem in Southwestern Ordos Basin. Journal of Lanzhou University (Natural Sciences), 57(5): 637-649, 658(in Chinese with English abstract).
      Zhu, X. M., Pan, R., Zhu, S. F., et al., 2018. Research Progress and Core Issues in Tight Reservoir Exploration. Earth Science Frontiers, 25(2): 141-146(in Chinese with English abstract).
      Zhu, Y. H., Zhao, Z. G., Zhang, D. M., et al., 2022. Accumulation Conditions and Accumulation Laws of Tight Gas in Shenfu Area, Northeast of Ordos Basin. China Offshore Oil and Gas, 34(4): 55-64(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Zhang, G. S., et al., 2014. Conventional and Unconventional Petroleum "Orderly Accumulation": Concept and Practical Significance. Petroleum Exploration and Development, 41(1): 14-27(in Chinese with English abstract). doi: 10.1016/S1876-3804(14)60002-1
      Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Earth Science, 48(6): 2376-2397(in Chinese with English abstract).
      Zou, C. N., Zhai, G. M., Zhang, G. Y., et al., 2015. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Petroleum Exploration and Development, 42(1): 13-25(in Chinese with English abstract).
      Zou, C. N., Zhu, R. K., Wu, S. T., et al., 2012. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance. Acta Petrolei Sinica, 33(2): 173-187(in Chinese with English abstract). doi: 10.1038/aps.2011.203
      郭春华, 周文, 林璠, 等, 2014. 页岩气储层毛管压力曲线分形特征. 成都理工大学学报(自然科学版), 41(6): 773-777.
      贾承造, 郑民, 张永峰, 2012. 中国非常规油气资源与勘探开发前景. 石油勘探与开发, 39(2): 129-136.
      卢双舫, 李俊乾, 张鹏飞, 等, 2018. 页岩油储集层微观孔喉分类与分级评价. 石油勘探与开发, 45(3): 436-444.
      潘荣, 朱筱敏, 王星星, 等, 2014. 深层有效碎屑岩储层形成机理研究进展. 岩性油气藏, 26(4): 73-80.
      远光辉, 操应长, 贾珍臻, 等, 2015. 含油气盆地中深层碎屑岩储层异常高孔带研究进展. 天然气地球科学, 26(1): 28-42.
      赵靖舟, 2012. 非常规油气有关概念、分类及资源潜力. 天然气地球科学, 23(3): 393-406.
      周翔, 何生, 刘萍, 等, 2016. 鄂尔多斯盆地代家坪地区长6致密油储层孔隙结构特征及分类评价. 地学前缘, 23(3): 253-265.
      朱瑞静, 李荣西, 刘新社, 等, 2021. 鄂尔多斯盆地西南部上古生界致密砂岩气储层成岩演化特征及物性演化. 兰州大学学报(自然科学版), 57(5): 637-649, 658.
      朱筱敏, 潘荣, 朱世发, 等, 2018. 致密储层研究进展和热点问题分析. 地学前缘, 25(2): 141-146.
      祝彦贺, 赵志刚, 张道旻, 等, 2022. 鄂尔多斯盆地神府地区致密气成藏条件及成藏规律. 中国海上油气, 34(4): 55-64.
      邹才能, 杨智, 董大忠, 等, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
      邹才能, 杨智, 张国生, 等, 2014. 常规-非常规油气"有序聚集" 理论认识及实践意义. 石油勘探与开发, 41(1): 14-27.
      邹才能, 杨智, 张国生, 等, 2023. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397. doi: 10.3799/dqkx.2023.091
      邹才能, 翟光明, 张光亚, 等, 2015. 全球常规-非常规油气形成分布、资源潜力及趋势预测. 石油勘探与开发, 42(1): 13-25.
      邹才能, 朱如凯, 吴松涛, 等, 2012. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)

      Article views (167) PDF downloads(31) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return