• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 1
    Jan.  2025
    Turn off MathJax
    Article Contents
    Shi Yajing, Liu Hanbin, Li Junjie, Zhang Jia, Jin Guishan, Han Juan, Zhang Jianfeng, Shi Xiao, Zhang Wanfeng, Shi Jia, 2025. Research of Xi'an Pulsed Reactor (XAPR) for Irradiation Conditions of 40Ar/39Ar Dating Sample. Earth Science, 50(1): 88-96. doi: 10.3799/dqkx.2024.066
    Citation: Shi Yajing, Liu Hanbin, Li Junjie, Zhang Jia, Jin Guishan, Han Juan, Zhang Jianfeng, Shi Xiao, Zhang Wanfeng, Shi Jia, 2025. Research of Xi'an Pulsed Reactor (XAPR) for Irradiation Conditions of 40Ar/39Ar Dating Sample. Earth Science, 50(1): 88-96. doi: 10.3799/dqkx.2024.066

    Research of Xi'an Pulsed Reactor (XAPR) for Irradiation Conditions of 40Ar/39Ar Dating Sample

    doi: 10.3799/dqkx.2024.066
    • Received Date: 2023-12-06
      Available Online: 2025-02-10
    • Publish Date: 2025-01-25
    • Domestic sample irradiation resources are limited, with few reactors available, infrequent reactor startups, and a lack of systematic research on the parameters for reactor irradiation samples. These limitations hinder the progress of scientific research in 40Ar/39Ar dating. Therefore, it is essential to develop new irradiation resources. For the first time, the irradiation conditions for 40Ar/39Ar dating samples in the Xi'an Pulsed Reactor (XAPR) were studied. The radial and axial gradient changes in neutron flux were determined using the biotite standard material ZBH-25, and the correction factors for side reactions were obtained using potassium salt and calcium salt. The results indicate that the radial J value of the irradiation channel is 0.49%, and a peak neutron flux, suggesting that the sample is irradiated in the center of the reactor. The axial neutron flux gradient in the irradiation channel is 0.54% /cm, and the correction factors in the XAPR irradiation channel are (40Ar/39Ar)K =0.002 082 6, (39Ar/37Ar)Ca =0.000 776 92, (36Ar/37Ar)Ca =0.000 299 98. The standard material ZBH-25 biotite was dated, confirming that the reactor meets the irradiation conditions for 40Ar/39Ar dating samples and can serve as a new irradiation source.

       

    • loading
    • Borst, A. M., Waight, T. E., Finch, A. A., et al., 2019. Dating Agpaitic Rocks: A Multi-System (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) Isotopic Study of Layered Nepheline Syenites from the Ilímaussaq Complex, Greenland. Lithos, 324: 74-88. https://doi.org/10.1016/j.lithos.2018.10.037
      Bottomley, R. J., York, D., 1976. 40Ar-39Ar Age Determinations on the Owyhee Basalt of the Columbia Plateau. Earth and Planetary Science Letters, 31(1): 75-84. https://doi.org/10.1016/0012-821X(76)90098-4
      Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427-433. https://doi.org/10.1016/0012-821X(70)90146-9
      Chen, W., Jiang, X. B, Chen, L. X., et al., 2018. Physical and Safety Analysis of Uranium-Zirconium Hydride Pulse Reactor. Science Press, Beijing, 1-10 (in Chinese).
      Clark, A. H., Archibald, D. A., Lee, A. W., et al., 1998. Laser Probe 40Ar/39Ar Ages of Early- and Late-Stage Alteration Assemblages, Rosario Porphyry Copper- Molybdenum Deposit, Collahuasi District, I Region, Chile. Economic Geology, 93(3): 326-337. https://doi.org/10.2113/gsecongeo.93.3.326
      Coble, M. A., Grove, M., Calvert, A. T., 2011. Calibration of Nu-Instruments Noblesse Multicollector Mass Spectrometers for Argon Isotopic Measurements Using a Newly Developed Reference Gas. Chemical Geology, 290(1-2): 75-87. https://doi.org/10.1016/j.chemgeo.2011.09.003
      Dalrymple, G. B., Duffield, W. A., 1988. High Precision 40Ar/39Ar Dating of Oligocene Rhyolites from the Mogollon-Datil Volcanic Field Using a Continuous Laser System. Geophysical Research Letters, 15(5): 463-466. https://doi.org/10.1029/gl015i005p00463
      Dalrymple, G. B., Lanphere, M. A., 1971. 40Ar/39Ar Technique of K-Ar Dating: A Comparison with the Conventional Technique. Earth and Planetary Science Letters, 12(3): 300-308. https://doi.org/10.1016/0012-821X(71)90214-7
      Dalrymple, G. B., Lanphere, M. A., 1974. 40Ar/39Ar Age Spectra of Some Undisturbed Terrestrial Samples. Geochimica et Cosmochimica Acta, 38(5): 715-738. https://doi.org/10.1016/0016-7037(74)90146-X
      Foland, K. A., Chen, J. F., Linder, J. S., et al., 1989. High-Resolution 40Ar/39Ar Chronology of Multiple Intrusion Igneous Complexes. Contributions to Mineralogy and Petrology, 102(2): 127-137. https://doi.org/10.1007/BF00375335
      Ishizuka, O., 1998. Vertical and Horizontal Variations of the Fast Neutron Flux in a Single Irradiation Capsule and Their Significance in the Laser-Heating 40Ar/39Ar Analysis: Case Study for the Hydraulic Rabbit Facility of the JMTR Reactor, Japan. Geochemical Journal, 32(4): 243-252. https://doi.org/10.2343/geochemj.32.243
      Jiang, D. Y., Jiang, X. B., Xu, P., et al., 2021. Study on the Simulation Method of Equivalent Surface Source of Radial Duct 1 in Xi'an Pulse Reactor. Progress Report on Nuclear Science and Technology in China (Vol. 7)- Volume 5 of Proceedings of the 2021 Annual Academic Conference of the Chinese Nuclear Society, 447-452 (in Chinese with English abstract).
      Jiang, X. B., Chen, D., Xie, Z. S., et al., 2001. Monte Carlo Method for Reactor Duct Shielding Calculation. Chinese Journal of Computational Physics, 18(3): 285-288 (in Chinese with English abstract).
      Kellett, D., Joyce, N., 2014. Analytical Details of Single- and Multi-Collection 40Ar/39Ar Measurements for Conventional Step-Heating and Total-Fusion Age Calculation Using the Nu Noblesse at the Geological Survey of Canada. Geological Survey of Canada, Technical Note 8, 1-27. https://doi.org/10.4095/293465
      Koppers, A. A. P., 2002. ArArCALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/S0098- 3004(01)00095-4 doi: 10.1016/S0098-3004(01)00095-4
      Li, D., Zhang, W. S., Jiang, X. B., et al., 2014. Parameter Measurement for Radiation Field of Large Space Neutron Irradiation Platform in Xi 'an Pulsed Reactor. Atomic Energy Science and Technology, 48(7): 1243-1249 (in Chinese with English abstract).
      Li, J. J., Liu, H. B., Zhang, J., et al., 2019. Primary Research of High Flux Engineering Test Reactor (HFETR) for Irradiation of 40Ar-39Ar Dating Samples. Earth Science, 44(3): 727-737 (in Chinese with English abstract).
      Li, X. H., Li, Y., Li, Q. L., et al., 2022. Progress and Prospects of Radiometric Geochronology. Acta Geologica Sinica, 96(1): 104-122 (in Chinese with English abstract).
      McDougall, I., 1985. K-Ar and 40Ar/39Ar Dating of the Hominid-Bearing Pliocene-Pleistocene Sequence at Koobi Fora, Lake Turkana, Northern Kenya. Geological Society of America Bulletin, 96(2): 159-175. https://doi.org/10.1130/0016-7606(1985)96159: kaadot>2.0.co;2 doi: 10.1130/0016-7606(1985)96159:kaadot>2.0.co;2
      Merrihue, C., Turner, G., 1966. Potassium-Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852-2857. https://doi.org/10.1029/jz071i011p02852
      Mitchell, J. G., 1968. The Argon-40/Argon-39 Method for Potassium-Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781-790. https://doi.org/10.1016/0016-7037(68)90012-4
      Renne, P. R., Knight, K. B., Nomade, S., et al., 2005. Application of Deuteron-Deuteron (D-D) Fusion Neutrons to 40Ar/39Ar Geochronology. Applied Radiation and Isotopes, 62(1): 25-32. https://doi.org/10.1016/j.apradiso.2004.06.004
      Renne, P. R., Sharp, W. D., Deino, A. L., et al., 1997. 40Ar/39Ar Dating into the Historical Realm: Calibration against Pliny the Younger. Science, 277(5330): 1279-1280. https://doi.org/10.1126/science.277.5330.1279
      Reynolds, J. H., Turner, G., 1964. Rare Gases in the Chondrite Renazzo. Journal of Geophysical Research, 69(15): 3263-3281. https://doi.org/10.1029/jz069i015p03263
      Rutte, D., Pfänder, J. A., Koleška, M., et al., 2015. Radial Fast-Neutron Fluence Gradients during Rotating 40Ar/39Ar Sample Irradiation Recorded with Metallic Fluence Monitors and Geological Age Standards. Geochemistry, Geophysics, Geosystems, 16(1): 336-345. https://doi.org/10.1002/2014gc005611
      Sang, H. Q., Wang, F., He, H. Y., et al., 2006. Intercalibration of ZBH-25 Biotite Reference Material Untilized for K-Ar and 40Ar-39Ar Age Determination. Acta Petrologica Sinica, 22(12): 3059-3078 (in Chinese with English abstract).
      Schaeffer, O. A., Müeller, H. W., Grove, T. L., 1977. Laser 39Ar-40Ar Study of Apollo 17 Basalts. Proc. Lunar Sci. Conf. 8th, 1489-1499.
      Schwarz, W. H., Trieloff, M., 2007. Intercalibration of 40Ar-39Ar Age Standards NL-25, HB3gr Hornblende, GA1550, SB-3, HD-B1 Biotite and BMus/2 Muscovite. Chemical Geology, 242(1-2): 218-231. https://doi.org/10.1016/j.chemgeo.2007.03.016
      Stacey, J. S., Sherrill, N. D., Dalrymple, G. B., et al., 1981. A Five-Collector System for the Simultaneous Measurement of Argon Isotope Ratios in a Static Mass Spectrometer. International Journal of Mass Spectrometry and Ion Physics, 39(2): 167-180. https://doi.org/10.1016/0020-7381(81)80031-9
      Vermeesch, P., 2015. Revised Error Propagation of 40Ar/39Ar Data, Including Covariances. Geochimica et Cosmochimica Acta, 171: 325-337. https://doi.org/10.1016/j.gca.2015.09.008
      Wang, F., Zheng, X. S., Lee, J. I. K., et al., 2009. An 40Ar/39Ar Geochronology on a Mid-Eocene Igneous Event on the Barton and Weaver Peninsulas: Implications for the Dynamic Setting of the Antarctic Peninsula. Geochemistry, Geophysics, Geosystems, 10(12): 1-29. https://doi.org/10.1029/2009gc002874
      Wang, L. Z., Wang, L. Y., Li, J., et al., 2022. Statistics Analysis of Illite 40Ar-39Ar Ages and Petroleum Accumulation Period. Earth Science, 47(2): 479-489 (in Chinese with English abstract).
      Wu, L. Y., 2019. Advances of Noble Gas Isotope Geochemistry Application in the Study of Ore Deposits. Acta Petrologica Sinica, 35(1): 215-232 (in Chinese with English abstract).
      Xu, X. B., Deng, F., Wang, D., et al., 2022. Advances in Composition and Dating Methods of Fault Gouge and Weakening Mechanisms of Earthquake Faults in Bedrock Area. Bulletin of Geological Science and Technology, 41(5): 122-131 (in Chinese with English abstract).
      Yang, Q., Pu, Y. X., Li, D. Z, et al., 2002. Xi' an Pulsed Reactor. Nuclear Power Engineering, 23(6): 1-7 (in Chinese with English abstract).
      Zhou, Z. J., Chen, Z. L., Zhang, W. G., et al., 2022. Geology, C-H-O Isotopes, and Muscovite 40Ar-39Ar Dating of the Qingbaishan Gold Deposit: Implications for Tectonism and Metallogenesis of Early Devonian Gold Deposits in the Beishan Orogen, NW China. Ore Geology Reviews, 145: 1-13. https://doi.org/10.1016/j.oregeorev.2022.104895
      陈伟, 江新标, 陈立新, 等, 2018. 铀氢锆脉冲反应堆物理与安全分析. 北京: 科学出版社, 1-10.
      姜夺玉, 江新标, 许鹏, 等, 2021. 西安脉冲堆1#径向孔道等效平面源模拟方法研究. 中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第5册, 447-452.
      江新标, 陈达, 谢仲生, 等, 2001. 反应堆孔道屏蔽计算的蒙特卡罗方法. 计算物理, 18(3): 285-288.
      李达, 张文首, 江新标, 等, 2014. 西安脉冲堆大空间中子辐照实验平台辐射场参数测量. 原子能科学技术, 48(7): 1243-1249.
      李军杰, 刘汉彬, 张佳, 等, 2019. 高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探. 地球科学, 44(3): 727-737. doi: 10.3799/DQKX.2019.006
      李献华, 李扬, 李秋立, 等, 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104-122.
      桑海清, 王非, 贺怀宇, 等, 2006. K-Ar法地质年龄国家一级标准物质ZBH-25黑云母的研制. 岩石学报, 22(12): 3059-3078.
      王龙樟, 王立云, 李季, 等, 2022. 伊利石40Ar-39Ar年龄的统计分析与成藏期. 地球科学, 47(2): 479-489. doi: 10.3799/dqkx.2021.071
      武丽艳, 2019. 稀有气体同位素地球化学在矿床学研究中的应用进展. 岩石学报, 35(1): 215-232.
      徐先兵, 邓飞, 王墩, 等, 2022. 基岩区断层泥的物质组成、定年方法与地震断层弱化机制研究进展. 地质科技通报, 41(5): 122-131.
      杨岐, 卜永熙, 李达忠, 等, 2002. 西安脉冲反应堆. 核动力工程, 23(6): 1-7.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (192) PDF downloads(19) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return