Citation: | Zhu Jingbao, Liu Heyi, Luan Shicheng, Liang Kunzheng, Song Jindong, Li Shanyou, 2025. Prediction of On-Site Peak Ground Motion Based on Machine Learning and Transfer Learning. Earth Science, 50(5): 1842-1860. doi: 10.3799/dqkx.2024.071 |
Allen, R. M., Melgar, D., 2019. Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annual Review of Earth and Planetary Sciences, 47: 361-388. https://doi.org/10.1146/annurev-earth-053018-060457
|
Brondi, P., Picozzi, M., Emolo, A., et al., 2015. Predicting the Macroseismic Intensity from Early Radiated P Wave Energy for On-Site Earthquake Early Warning in Italy. Journal of Geophysical Research: Solid Earth, 120(10): 7174-7189. https://doi.org/10.1002/2015jb012367
|
Chen, M., Wang, H., 2022. Explainable Machine Learning Model for Prediction of Ground Motion Parameters with Uncertainty Quantification. Chinese Journal of Geophysics, 65(9): 3386-3404 (in Chinese with English abstract).
|
Chung, J., Gulcehre, C., Cho, K., et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. ArXivv: 1412.3555.
|
Fu, Z. Y., Li, D. Q., Wang, S., et al., 2023. Landslide Susceptibility Assessment Based on Multitemporal Landslide Inventories and TrAdaBoost Transfer Learning. Earth Science, 48(5): 1935-1947 (in Chinese with English abstract).
|
Hsu, T. Y., Huang, C. W., 2021. Onsite Early Prediction of PGA Using CNN with Multi-Scale and Multi-Domain P-Waves as Input. Frontiers in Earth Science, 9: 626908. https://doi.org/10.3389/feart.2021.626908
|
Hsu, T. Y., Pratomo, A., 2022. Early Peak Ground Acceleration Prediction for On-Site Earthquake Early Warning Using LSTM Neural Network. Frontiers in Earth Science, 10: 911947. https://doi.org/10.3389/feart.2022.911947
|
Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864 (in Chinese with English abstract).
|
Kamigaichi, O., Saito, M., Doi, K., et al., 2009. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80(5): 717-726. https://doi.org/10.1785/gssrl.80.5.717
|
Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annual Review of Earth and Planetary Sciences, 33: 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
|
Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341. https://doi.org/10.1007/s00024-014-0964-y
|
Kong, Q. K., Wang, R. J., Walter, W. R., et al., 2022. Combining Deep Learning with Physics Based Features in Explosion-Earthquake Discrimination. Geophysical Research Letters, 49(13): e2022GL098645. https://doi.org/10.1029/2022gl098645
|
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning. Nature, 521(7553): 436-444. https://doi.org/10.1038/nature14539
|
Li, Z. F., 2022. A Generic Model of Global Earthquake Rupture Characteristics Revealed by Machine Learning. Geophysical Research Letters, 49(8): e2021GL096464. https://doi.org/ 10.1029/2021GL096464
|
Liu, C., Li, X. J., Jing, B. B., et al., 2019. The Distance Segmentation Characters of PGV-Pd Relationship Parameters for Earthquake Early Warning. Chinese Journal of Geophysics, 62(4): 1413-1426 (in Chinese with English abstract).
|
Lü, S., Fang, L. H., Ren, H. Y., et al., 2024. Overview of the Earthquake Monitoring Status in the United States. China Earthquake Engineering Journal, 46(2): 431-448 (in Chinese with English abstract).
|
Ma, Q., 2008. Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese with English abstract).
|
Ma, Q., Jin, X., Li, S. Y., et al., 2013. Automatic P-Arrival Detection for Earthquake Early Warning. Chinese Journal of Geophysics, 56(7): 2313-2321 (in Chinese with English abstract).
|
Mousavi, S. M., Beroza, G. C., 2020. A Machine-Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters, 47(1): e2019GL085976. doi: 10.1029/2019GL085976
|
Pan, S. J., Yang, Q., 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191
|
Peng, C. Y., Ma, Q., Jiang, P., et al., 2020. Performance of a Hybrid Demonstration Earthquake Early Warning System in the Sichuan-Yunnan Border Region. Seismological Research Letters, 91(2A): 835-846. https://doi.org/10.1785/0220190101
|
Serdar Kuyuk, H., Allen, R. M., Brown, H., et al., 2014. Designing a Network-Based Earthquake Early Warning Algorithm for California: ElarmS-2. Bulletin of the Seismological Society of America, 104(1): 162-173. https://doi.org/10.1785/0120130146
|
Song, J., Zhu, J., Li, S., 2023. MEANet: Magnitude Estimation via Physics-Based Features Time Series, an Attention Mechanism, and Neural Networks. Geophysics, 88(1): V33-V43. https://doi.org/10.1190/geo2022-0196.1
|
Song, J. D., Jiao, C. C., Li, S. Y., et al., 2018. Prediction Method of First-Level Earthquake Warning for High Speed Railway Based on Two-Parameter Threshold of Seismic P-Wave. China Railway Science, 39(1): 138-144 (in Chinese with English abstract).
|
Song, J. D., Yu, C., Li, S. Y., 2021. Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics, 64(2): 555-568 (in Chinese with English abstract).
|
State Administration for Market Regulation, Standardization Administration of China, 2020. GB/T‐17742‐2020, The Chinese Seismic Intensity Scale. China Quality and Standards Publishing & Media Co., Ltd., Beijing (in Chinese).
|
Wald, D. J., Quitoriano, V., Heaton, T. H., et al., 1999. Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3): 557-564. https://doi.org/10.1193/1.1586058
|
Wang, C. Y., Huang, T. C., Wu, Y. M., 2022. Using LSTM Neural Networks for Onsite Earthquake Early Warning. Seismological Research Letters, 93(2A): 814-826. https://doi.org/10.1785/0220210197
|
Wang, D., Sun, K., 2022. How the Big Data Seismology and AI Refine Rapid Determination of Source Parameters of Large Earth-Quakes?. Earth Science, 47(10): 3915-3917 (in Chinese with English abstract).
|
Wang, J., Yang, Y., Mao, J. H., et al., 2016. CNN-RNN: A Unified Framework for Multi-Label Image Classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2285-2294.
|
Wu, L. Y., Tong, J. B., Wang, Z. F., et al., 2023. Classification of Damaged Grade on Rural Houses after Flood Disaster Based on Deep Convolutional Neural Network and Transfer Learning. Earth Science, 48(5): 1742-1754 (in Chinese with English abstract).
|
Wu, Y. M., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3): 1181-1185. https://doi.org/10.1785/0120040193
|
Yu, C., Song, J. D., Li, S. Y., 2021. Prediction of Ground Motion for On-Site Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(3): 63-72, 80 (in Chinese with English abstract).
|
Zhang, H., Jin, X., Wei, Y. X., et al., 2016. An Earthquake Early Warning System in Fujian, China. Bulletin of the Seismological Society of America, 106(2): 755-765. https://doi.org/10.1785/0120150143
|
Zhou, L. Q., Zhao, C. P., Zhang, M., et al., 2021. Machine-Learning-Based Earthquake Locations Reveal the Seismogenesis of the 2020 Mw 5.0 Qiaojia, Yunnan Earthquake. Geophysical Journal International, 228(3): 1637-1647. https://doi.org/10.1093/gji/ggab420
|
Zhu, J., Li, Z. F., Fang, L. H., 2023a. USTC-Pickers: A Unified Set of Seismic Phase Pickers Transfer Learned for China. Earthquake Science, 36(2): 95-112. https://doi.org/10.1016/j.eqs.2023.03.001
|
Zhu, J. B., Li, S. Y., Wei, Y. X., et al., 2023b. On-Site Instrumental Seismic Intensity Prediction for China via Recurrent Neural Network and Transfer Learning. Journal of Asian Earth Sciences, 248: 105610. https://doi.org/10.1016/j.jseaes.2023.105610
|
Zhu, J. B., Song, J. D., Li, S. Y., 2024. Influence of Low-Cost Sensors on Earthquake Early Warning Magnitude Estimation Using Convolutional Neural Network Model. Journal of Harbin Institute of Technology, 56(6): 81-90 (in Chinese with English abstract).
|
Zhu, J. B., Li, S. Y., Song, J. D., 2022. Hybrid Deep-Learning Network for Rapid On-Site Peak Ground Velocity Prediction. IEEE Transactions on Geoscience and Remote Sensing, 60: 5925712. https://doi.org/10.1109/TGRS.2022.3230829
|
Zollo, A., Amoroso, O., Lancieri, M., et al., 2010. A Threshold-Based Earthquake Early Warning Using Dense Accelerometer Networks. Geophysical Journal International, 183(2): 963-974. https://doi.org/10.1111/j.1365-246X.2010.04765.x
|
陈蒙, 王华, 2022. 地震动强度参数估计的可解释性与不确定度机器学习模型. 地球物理学报, 65(9): 3386-3404.
|
付智勇, 李典庆, 王顺, 等, 2023. 基于多时空滑坡编录和TrAdaBoost迁移学习的滑坡易发性评价. 地球科学, 48(5): 1935-1947. doi: 10.3799/dqkx.2023.013
|
胡进军, 丁祎天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
|
刘辰, 李小军, 景冰冰, 等, 2019. 地震预警PGV-Pd关系参数的距离分段特征. 地球物理学报, 62(4): 1413-1426.
|
吕帅, 房立华, 任华育, 等, 2024. 美国地震监测现状综述. 地震工程学报, 46(2): 431-448.
|
马强, 2008. 地震预警技术研究及应用(博士学位论文). 哈尔滨: 中国地震局工程力学研究所.
|
马强, 金星, 李山有, 等, 2013. 用于地震预警的P波震相到时自动拾取. 地球物理学报, 56(7): 2313-2321.
|
国家市场监督管理总局, 国家标准化管理委员会, 2020. GB/T‐17742‐2020, 中国地震烈度表. 北京: 中国标准出版社.
|
宋晋东, 教聪聪, 李山有, 等, 2018. 基于地震P波双参数阈值的高速铁路Ⅰ级地震警报预测方法. 中国铁道科学, 39(1): 138-144.
|
宋晋东, 余聪, 李山有, 2021. 地震预警现地PGV连续预测的最小二乘支持向量机模型. 地球物理学报, 64(2): 555-568.
|
王墩, 孙琨, 2022. 地震大数据和AI如何改进全球大震参数快速测定?. 地球科学, 47(10): 3915-3917. doi: 10.3799/dqkx.2022.863
|
吴禄源, 仝敬博, 王自法, 等, 2023. 基于深度卷积神经网络和迁移学习的农村房屋洪涝灾害后受损等级分类. 地球科学, 48(5): 1742-1754. doi: 10.3799/dqkx.2022.502
|
余聪, 宋晋东, 李山有, 2021. 基于支持向量机的现地地震预警地震动峰值预测. 振动与冲击, 40(3): 63-72, 80.
|
朱景宝, 宋晋东, 李山有, 2024. 地震烈度仪对卷积神经网络模型地震预警震级估计的影响. 哈尔滨工业大学学报, 56(6): 81-90.
|