• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Zhu Jingbao, Liu Heyi, Luan Shicheng, Liang Kunzheng, Song Jindong, Li Shanyou, 2025. Prediction of On-Site Peak Ground Motion Based on Machine Learning and Transfer Learning. Earth Science, 50(5): 1842-1860. doi: 10.3799/dqkx.2024.071
    Citation: Zhu Jingbao, Liu Heyi, Luan Shicheng, Liang Kunzheng, Song Jindong, Li Shanyou, 2025. Prediction of On-Site Peak Ground Motion Based on Machine Learning and Transfer Learning. Earth Science, 50(5): 1842-1860. doi: 10.3799/dqkx.2024.071

    Prediction of On-Site Peak Ground Motion Based on Machine Learning and Transfer Learning

    doi: 10.3799/dqkx.2024.071
    • Received Date: 2024-03-26
      Available Online: 2025-06-06
    • Publish Date: 2025-05-25
    • To improve the accuracy of peak ground motion (peak ground acceleration (PGA) and peak ground velocity (PGV) prediction in Chinese instrument seismic intensity calculation for on-site earthquake early warning (EEW), a prediction method of on-site peak ground motion based on machine learning and transfer learning is proposed. A pretrained on-site peak ground motion prediction model was established using neural networks based on strong motion data recorded by the K-NET network in Japan. Based on strong motion data from China and the pretrained on-site peak ground motion prediction model, an on-site peak ground motion prediction model for China was established through transfer learning. For the Japanese and Chinese test dataset and Luding M6.8 eathquake, at 3 s after the arrival of P-wave, compared to traditional on-site peak ground motion prediction method, the method proposed in this study has smaller mean absolute error and standard deviation for PGA prediction and PGV prediction. The results indicate that the method proposed in this study can improve the reliability of predicting peak ground motion in on-site EEW to a certain extent, which is of great significance for the development of on-site EEW systems.

       

    • loading
    • Allen, R. M., Melgar, D., 2019. Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annual Review of Earth and Planetary Sciences, 47: 361-388. https://doi.org/10.1146/annurev-earth-053018-060457
      Brondi, P., Picozzi, M., Emolo, A., et al., 2015. Predicting the Macroseismic Intensity from Early Radiated P Wave Energy for On-Site Earthquake Early Warning in Italy. Journal of Geophysical Research: Solid Earth, 120(10): 7174-7189. https://doi.org/10.1002/2015jb012367
      Chen, M., Wang, H., 2022. Explainable Machine Learning Model for Prediction of Ground Motion Parameters with Uncertainty Quantification. Chinese Journal of Geophysics, 65(9): 3386-3404 (in Chinese with English abstract).
      Chung, J., Gulcehre, C., Cho, K., et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. ArXivv: 1412.3555. https://arxiv.org/abs/1412.3555v1
      Fu, Z. Y., Li, D. Q., Wang, S., et al., 2023. Landslide Susceptibility Assessment Based on Multitemporal Landslide Inventories and TrAdaBoost Transfer Learning. Earth Science, 48(5): 1935-1947 (in Chinese with English abstract).
      Hsu, T. Y., Huang, C. W., 2021. Onsite Early Prediction of PGA Using CNN with Multi-Scale and Multi-Domain P-Waves as Input. Frontiers in Earth Science, 9: 626908. https://doi.org/10.3389/feart.2021.626908
      Hsu, T. Y., Pratomo, A., 2022. Early Peak Ground Acceleration Prediction for On-Site Earthquake Early Warning Using LSTM Neural Network. Frontiers in Earth Science, 10: 911947. https://doi.org/10.3389/feart.2022.911947
      Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864 (in Chinese with English abstract).
      Kamigaichi, O., Saito, M., Doi, K., et al., 2009. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80(5): 717-726. https://doi.org/10.1785/gssrl.80.5.717
      Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annual Review of Earth and Planetary Sciences, 33: 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
      Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341. https://doi.org/10.1007/s00024-014-0964-y
      Kong, Q. K., Wang, R. J., Walter, W. R., et al., 2022. Combining Deep Learning with Physics Based Features in Explosion-Earthquake Discrimination. Geophysical Research Letters, 49(13): e2022GL098645. https://doi.org/10.1029/2022gl098645
      LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning. Nature, 521(7553): 436-444. https://doi.org/10.1038/nature14539
      Li, Z. F., 2022. A Generic Model of Global Earthquake Rupture Characteristics Revealed by Machine Learning. Geophysical Research Letters, 49(8): e2021GL096464. https://doi.org/ 10.1029/2021GL096464
      Liu, C., Li, X. J., Jing, B. B., et al., 2019. The Distance Segmentation Characters of PGV-Pd Relationship Parameters for Earthquake Early Warning. Chinese Journal of Geophysics, 62(4): 1413-1426 (in Chinese with English abstract).
      Lü, S., Fang, L. H., Ren, H. Y., et al., 2024. Overview of the Earthquake Monitoring Status in the United States. China Earthquake Engineering Journal, 46(2): 431-448 (in Chinese with English abstract).
      Ma, Q., 2008. Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese with English abstract).
      Ma, Q., Jin, X., Li, S. Y., et al., 2013. Automatic P-Arrival Detection for Earthquake Early Warning. Chinese Journal of Geophysics, 56(7): 2313-2321 (in Chinese with English abstract).
      Mousavi, S. M., Beroza, G. C., 2020. A Machine-Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters, 47(1): e2019GL085976. doi: 10.1029/2019GL085976
      Pan, S. J., Yang, Q., 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191
      Peng, C. Y., Ma, Q., Jiang, P., et al., 2020. Performance of a Hybrid Demonstration Earthquake Early Warning System in the Sichuan-Yunnan Border Region. Seismological Research Letters, 91(2A): 835-846. https://doi.org/10.1785/0220190101
      Serdar Kuyuk, H., Allen, R. M., Brown, H., et al., 2014. Designing a Network-Based Earthquake Early Warning Algorithm for California: ElarmS-2. Bulletin of the Seismological Society of America, 104(1): 162-173. https://doi.org/10.1785/0120130146
      Song, J., Zhu, J., Li, S., 2023. MEANet: Magnitude Estimation via Physics-Based Features Time Series, an Attention Mechanism, and Neural Networks. Geophysics, 88(1): V33-V43. https://doi.org/10.1190/geo2022-0196.1
      Song, J. D., Jiao, C. C., Li, S. Y., et al., 2018. Prediction Method of First-Level Earthquake Warning for High Speed Railway Based on Two-Parameter Threshold of Seismic P-Wave. China Railway Science, 39(1): 138-144 (in Chinese with English abstract).
      Song, J. D., Yu, C., Li, S. Y., 2021. Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics, 64(2): 555-568 (in Chinese with English abstract).
      State Administration for Market Regulation, Standardization Administration of China, 2020. GB/T‐17742‐2020, The Chinese Seismic Intensity Scale. China Quality and Standards Publishing & Media Co., Ltd., Beijing (in Chinese).
      Wald, D. J., Quitoriano, V., Heaton, T. H., et al., 1999. Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3): 557-564. https://doi.org/10.1193/1.1586058
      Wang, C. Y., Huang, T. C., Wu, Y. M., 2022. Using LSTM Neural Networks for Onsite Earthquake Early Warning. Seismological Research Letters, 93(2A): 814-826. https://doi.org/10.1785/0220210197
      Wang, D., Sun, K., 2022. How the Big Data Seismology and AI Refine Rapid Determination of Source Parameters of Large Earth-Quakes?. Earth Science, 47(10): 3915-3917 (in Chinese with English abstract).
      Wang, J., Yang, Y., Mao, J. H., et al., 2016. CNN-RNN: A Unified Framework for Multi-Label Image Classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2285-2294. https://doi.org/10.1109/CVPR.2016.251
      Wu, L. Y., Tong, J. B., Wang, Z. F., et al., 2023. Classification of Damaged Grade on Rural Houses after Flood Disaster Based on Deep Convolutional Neural Network and Transfer Learning. Earth Science, 48(5): 1742-1754 (in Chinese with English abstract).
      Wu, Y. M., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3): 1181-1185. https://doi.org/10.1785/0120040193
      Yu, C., Song, J. D., Li, S. Y., 2021. Prediction of Ground Motion for On-Site Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(3): 63-72, 80 (in Chinese with English abstract).
      Zhang, H., Jin, X., Wei, Y. X., et al., 2016. An Earthquake Early Warning System in Fujian, China. Bulletin of the Seismological Society of America, 106(2): 755-765. https://doi.org/10.1785/0120150143
      Zhou, L. Q., Zhao, C. P., Zhang, M., et al., 2021. Machine-Learning-Based Earthquake Locations Reveal the Seismogenesis of the 2020 Mw 5.0 Qiaojia, Yunnan Earthquake. Geophysical Journal International, 228(3): 1637-1647. https://doi.org/10.1093/gji/ggab420
      Zhu, J., Li, Z. F., Fang, L. H., 2023a. USTC-Pickers: A Unified Set of Seismic Phase Pickers Transfer Learned for China. Earthquake Science, 36(2): 95-112. https://doi.org/10.1016/j.eqs.2023.03.001
      Zhu, J. B., Li, S. Y., Wei, Y. X., et al., 2023b. On-Site Instrumental Seismic Intensity Prediction for China via Recurrent Neural Network and Transfer Learning. Journal of Asian Earth Sciences, 248: 105610. https://doi.org/10.1016/j.jseaes.2023.105610
      Zhu, J. B., Song, J. D., Li, S. Y., 2024. Influence of Low-Cost Sensors on Earthquake Early Warning Magnitude Estimation Using Convolutional Neural Network Model. Journal of Harbin Institute of Technology, 56(6): 81-90 (in Chinese with English abstract).
      Zhu, J. B., Li, S. Y., Song, J. D., 2022. Hybrid Deep-Learning Network for Rapid On-Site Peak Ground Velocity Prediction. IEEE Transactions on Geoscience and Remote Sensing, 60: 5925712. https://doi.org/10.1109/TGRS.2022.3230829
      Zollo, A., Amoroso, O., Lancieri, M., et al., 2010. A Threshold-Based Earthquake Early Warning Using Dense Accelerometer Networks. Geophysical Journal International, 183(2): 963-974. https://doi.org/10.1111/j.1365-246X.2010.04765.x
      陈蒙, 王华, 2022. 地震动强度参数估计的可解释性与不确定度机器学习模型. 地球物理学报, 65(9): 3386-3404.
      付智勇, 李典庆, 王顺, 等, 2023. 基于多时空滑坡编录和TrAdaBoost迁移学习的滑坡易发性评价. 地球科学, 48(5): 1935-1947. doi: 10.3799/dqkx.2023.013
      胡进军, 丁祎天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
      刘辰, 李小军, 景冰冰, 等, 2019. 地震预警PGV-Pd关系参数的距离分段特征. 地球物理学报, 62(4): 1413-1426.
      吕帅, 房立华, 任华育, 等, 2024. 美国地震监测现状综述. 地震工程学报, 46(2): 431-448.
      马强, 2008. 地震预警技术研究及应用(博士学位论文). 哈尔滨: 中国地震局工程力学研究所.
      马强, 金星, 李山有, 等, 2013. 用于地震预警的P波震相到时自动拾取. 地球物理学报, 56(7): 2313-2321.
      国家市场监督管理总局, 国家标准化管理委员会, 2020. GB/T‐17742‐2020, 中国地震烈度表. 北京: 中国标准出版社.
      宋晋东, 教聪聪, 李山有, 等, 2018. 基于地震P波双参数阈值的高速铁路Ⅰ级地震警报预测方法. 中国铁道科学, 39(1): 138-144.
      宋晋东, 余聪, 李山有, 2021. 地震预警现地PGV连续预测的最小二乘支持向量机模型. 地球物理学报, 64(2): 555-568.
      王墩, 孙琨, 2022. 地震大数据和AI如何改进全球大震参数快速测定?. 地球科学, 47(10): 3915-3917. doi: 10.3799/dqkx.2022.863
      吴禄源, 仝敬博, 王自法, 等, 2023. 基于深度卷积神经网络和迁移学习的农村房屋洪涝灾害后受损等级分类. 地球科学, 48(5): 1742-1754. doi: 10.3799/dqkx.2022.502
      余聪, 宋晋东, 李山有, 2021. 基于支持向量机的现地地震预警地震动峰值预测. 振动与冲击, 40(3): 63-72, 80.
      朱景宝, 宋晋东, 李山有, 2024. 地震烈度仪对卷积神经网络模型地震预警震级估计的影响. 哈尔滨工业大学学报, 56(6): 81-90.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(11)

      Article views (53) PDF downloads(11) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return