Citation: | Li Haoxuan, Ding Lin, Wang Chao, 2024. Crustal Thickeness and Topographic Elevation: Insights from Geochemistry of Igneous Rocks. Earth Science, 49(12): 4404-4417. doi: 10.3799/dqkx.2024.072 |
Airy, G. B., 1855. On the Computation of the Effect of the Attraction of Mountain Masses as Disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys. Philosophical Transactions of the Royal Society of London, 16(2): 42-43. https://doi.org/10.1098/rstl.1855.0003
|
Alexander, E. W., Wielicki, M. M., Harrison, T. M., et al., 2019. Hf and Nd Isotopic Constraints on Pre- and Syn-Collisional Crustal Thickness of Southern Tibet. Journal of Geophysical Research: Solid Earth, 124(11): 11038-11054. https://doi.org/10.1029/2019jb017696
|
Balica, C., Ducea, M. N., Gehrels, G. E., et al., 2020. A Zircon Petrochronologic View on Granitoids and Continental Evolution. Earth and Planetary Science Letters, 531: 116005. https://doi.org/10.1016/j.epsl.2019.116005
|
Barth, A. P., Wooden, J. L., Jacobson, C. E., et al., 2013. Detrital Zircon as a Proxy for Tracking the Magmatic Arc System: The California Arc Example. Geology, 41(2): 223-226. https://doi.org/10.1130/g33619.1
|
Brudner, A., Jiang, H. H., Chu, X., et al., 2022. Crustal Thickness of the Grenville Orogen: A Mesoproterozoic Tibet? Geology, 50(4): 402-406.
|
Carrapa, B., DeCelles, P. G., Ducea, M. N., et al., 2022. Estimates of Paleo-Crustal Thickness at Cerro Aconcagua (Southern Central Andes) from Detrital Proxy-Records: Implications for Models of Continental Arc Evolution. Earth and Planetary Science Letters, 585: 117526. https://doi.org/10.1016/j.epsl.2022.117526
|
Cassel, E. J., Breecker, D. O., Henry, C. D., et al., 2014. Profile of a Paleo-Orogen: High Topography across the Present-Day Basin and Range from 40 to 23 Ma. Geology, 42(11): 1007-1010. https://doi.org/10.1130/g35924.1
|
Chai, X. H., Zeng, Y. C., Xu, J. F., et al., 2023. Crustal Thickening and Uplift of the Northwestern Lhasa Terrane, Central Tibetan Plateau: Insights from Mid-Eocene Volcanic Rocks in the Gerze Region. Lithos, 446: 107157. https://doi.org/10.1016/j.lithos.2023.107157
|
Chapman, J. B., Ducea, M. N., Decells, P. G., et al., 2015. Tracking Changes in Crustal Thickness during Orogenic Evolution with Sr/Y: An Example from the North American Cordillera. Geology, 43(10): 919-922. https://doi.org/10.1130/g36996.1
|
Chapman, J. B., Gehrels, G. E., Ducea, M. N., et al., 2016. A New Method for Estimating Parent Rock Trace Element Concentrations from Zircon. Chemical Geology, 439: 59-70. https://doi.org/10.1016/j.chemgeo.2016.06.014
|
Chen, Z., 2023. Europium Anomalies in Detrital Zircons Reveal the Crustal Thickness Evolution of South China in Early Neoproterozoic. Acta Geochimica, 42(4): 739-746. https://doi.org/10.1007/s11631-023-00605-x
|
Chiaradia, M., 2014. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. Nature Geoscience, 7: 43-46. https://doi.org/10.1038/ngeo2028
|
Chiaradia, M., 2015. Crustal Thickness Control on Sr/Y Signatures of Recent Arc Magmas: An Earth Scale Perspective. Scientific Reports, 5: 8115. https://doi.org/10.1038/srep08115
|
Chiaradia, M., 2021. Zinc Systematics Quantify Crustal Thickness Control on Fractionating Assemblages of Arc Magmas. Scientific Reports, 11(1): 14667. https://doi.org/10.1038/s41598-021-94290-6
|
Chiaradia, M., Ulianov, A., Kouzmanov, K., et al., 2012. Why Large Porphyry Cu Deposits Like High Sr/Y Magmas? Scientific Reports, 2: 685.
|
Chung, S. L., Chu, M. F., Ji, J., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from PostCollisional Adakites. Tectonophysics, 477(1-2): 36-48.
|
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
|
DePaolo, D. J., Harrison, T. M., Wielicki, M., et al., 2019. Geochemical Evidence for Thin Syn-Collision Crust and Major Crustal Thickening between 45 and 32 Ma at the Southern Margin of Tibet. Gondwana Research, 73: 123-135. https://doi.org/10.1016/j.gr.2019.03.011
|
Dickinson, W. R., 1975. Potash-Depth (K-h) Relations in Continental Margin and Intra-Oceanic Magmatic Arcs. Geology, 3(2): 53. https://doi.org/10.1130/0091-7613(1975)353:pkricm>2.0.co;2 doi: 10.1130/0091-7613(1975)353:pkricm>2.0.co;2
|
Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017-022-00318-4
|
Ding, L., Xu, Q., Yue, Y. H., et al., 2014. The Andean-Type Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 382: 250-264. https://doi.org/10.1016/j.epsl.2014.01.045
|
Ding, L., Xu, Q., Zhang, L. Y., et al., 2009. Regional Variation of River Water Oxygen Isotope and Empirical Elevation Prediction Models in Tibetan Plateau. Quaternary Sciences, 29(1): 1-12(in Chinese with English abstract).
|
Ducea, M. N., Paterson, S. R., DeCelles, P. G., 2015b. High-Volume Magmatic Events in Subduction Systems. Elements, 11(2): 99-104. https://doi.org/10.2113/gselements.11.2.99
|
Ducea, M. N., Saleeby, J. B., Bergantz, G., 2015a. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331. https://doi.org/10.1146/annurev-earth-060614-105049
|
Farner, M. J., Lee, C. T A., 2017. Effects of Crustal Thickness on Magmatic Differentiation in Subduction Zone Volcanism: A Global Study. Earth and Planetary Science Letters, 470: 96-107. https://doi.org/10.1016/j.epsl.2017.04.025
|
Haschke, M., Siebel, W., Günther, A., et al., 2002. Repeated Crustal Thickening and Recycling during the Andean Orogeny in North Chile (21°-26°S). Journal of Geophysical Research: Solid Earth, 107(B1): ECV 6-1-ECV 6-18.
|
Hawkesworth, C., Dhuime, B., Pietranik, A., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167: 229-248. https://doi.org/10.1144/0016-76492009-072
|
Hawkesworth, C. J., Cawood, P. A., Dhuime, B., et al., 2017. Earth's Continental Lithosphere through Time. Annual Review of Earth and Planetary Sciences, 45: 169-198. https://doi.org/10.1146/annurev-earth-063016-020525
|
Hawkesworth, C. J., Vollmer, R., 1979. Crustal Contamination versus Enriched Mantle: 143Nd/144Nd and 87Sr/86Sr Evidence from the Italian Volcanics. Contributions to Mineralogy and Petrology, 69(2): 151-165. https://doi.org/10.1007/bf00371858
|
Hildebrand, R. S., 2013. Mesozoic Assembly of the North American Cordillera. Geological Society of America. U. S. A. .
|
Hildebrand, R. S., Whalen, J. B., 2014. Arc and Slab-Failure Magmatism in Cordilleran Batholiths Ⅰ: The Cretaceous Coastal Batholith of Peru and Its Role in South American Orogenesis and Hemispheric Subduction Flip. Geoscience Canada, 41(3): 255-282. doi: 10.12789/geocanj.2014.41.047
|
Hildreth, W., Moorbath, S., 1988. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489. https://doi.org/10.1007/bf00372365
|
Hoke, G. D., Giambiagi, L. B., Garzione, C. N., et al., 2014. Neogene Paleoelevation of Intermontane Basins in a Narrow, Compressional Mountain Range, Southern Central Andes of Argentina. Earth and Planetary Science Letters, 406: 153-164. https://doi.org/10.1016/j.epsl.2014.08.032
|
House, M. A., Wernicke, B. P., Farley, K. A., 2001. Paleo-Geomorphology of the Sierra Nevada, California, from (U-Th)/He Ages in Apatite. American Journal of Science, 301: 77-102. https://doi.org/10.2475/ajs.301.2.77
|
Hu, F. Y., Ducea, M. N., Liu, S. W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7(1): 7058. https://doi.org/10.1038/s41598-017-07849-7
|
Hu, F. Y., Wu, F. Y., Chapman, J. B., et al., 2020. Quantitatively Tracking the Elevation of the Tibetan Plateau since the Cretaceous: Insights from Whole-Rock Sr/Y and La/Yb Ratios. Geophysical Research Letters, 47(15): e2020GL089202. https://doi.org/10.1029/2020gl089202
|
Ibarra, D. E., Dai, J. G., Gao, Y., et al., 2023. High-Elevation Tibetan Plateau before India-Eurasia Collision Recorded by Triple Oxygen Isotopes. Nature Geoscience, 16(9): 810-815. https://doi.org/10.1038/s41561-023-01243-x
|
Johnston, S. T., 2008. The Cordilleran Ribbon Continent of North America. Annual Review of Earth and Planetary Sciences, 36: 495-530. https://doi.org/10.1146/annurev.earth.36.031207.124331
|
Kay, R. W., Kay, S. M., 2002. Andean Adakites: Three Ways to Make Them. Acta Petrologica Sinica, 18(3): 303-311.
|
Keller, C. B., Schoene, B., Barboni, M., et al., 2015. Volcanic-Plutonic Parity and the Differentiation of the Continental Crust. Nature, 523: 301-307. https://doi.org/10.1038/nature14584
|
Kusky, T., Wang, L., 2022. Growth of Continental Crust in Intra-Oceanic and Continental-Margin Arc Systems: Analogs for Archean Systems. Science China: Earth Sciences, 65(9): 1615-1645. https://doi.org/10.1007/s11430-021-9964-1
|
Laske, G., Masters, G., Ma, Z., et al., 2013. Update on CRUST1.0-A1-Degree Global Model of Earth's Crust. Geophysical Research, 15: 2658.
|
Lee, C. T A., Luffi, P., Le Roux, V., et al., 2010. The Redox State of Arc Mantle Using Zn/Fe Systematics. Nature, 468: 681-685. https://doi.org/10.1038/nature09617
|
Lee, C. T A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040
|
Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation: From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3-4): 370-387.
|
Liu, S. G., Rudnick, R. L., Liu, W. R., et al., 2023. Copper Isotope Evidence for Sulfide Fractionation and Lower Crustal Foundering in Making Continental Crust. Science Advances, 9(36): eadg6995. https://doi.org/10.1126/sciadv.adg6995
|
Luffi, P., Ducea, M. N., 2022. Chemical Mohometry: Assessing Crustal Thickness of Ancient Orogens Using Geochemical and Isotopic Data. Reviews of Geophysics, 60(2): e2021RG000753. https://doi.org/10.1029/2021rg000753
|
Mamani, M., Worner, G., Sempere, T., 2010. Geochemical Variations in Igneous Rocks of the Central Andean Orocline (13°S to 18°S): Tracing Crustal Thickening and Magma Generation through Time and Space. Geological Society of America Bulletin, 122(1-2): 162-182. https://doi.org/10.1130/b26538.1
|
Mantle, G. W., Collins, W. J., 2008. Quantifying Crustal Thickness Variations in Evolving Orogens: Correlation between Arc Basalt Composition and Moho Depth. Geology, 36(1): 87. https://doi.org/10.1130/g24095a.1
|
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253.
|
McKenzie, N. R., Smye, A. J., Hegde, V. S., et al., 2018. Continental Growth Histories Revealed by Detrital Zircon Trace Elements: A Case Study from India. Geology, 46(3): 275-278. https://doi.org/10.1130/g39973.1
|
Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257(in Chinese with English abstract).
|
Paterson, S. R., Ducea, M. N., 2015. Arc Magmatic Tempos: Gathering the Evidence. Elements, 11(2): 91-98. https://doi.org/10.2113/gselements.11.2.91
|
Plank, T., Langmuir, C. H., 1988. An Evaluation of the Global Variations in the Major Element Chemistry of Arc Basalts. Earth and Planetary Science Letters, 90(4): 349-370. https://doi.org/10.1016/0012-821x(88)90135-5
|
Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786
|
Roberts, N. M. W., Hernández-Montenegro, J. D., Palin, R. M., 2024. Garnet Stability during Crustal Melting: Implications for Chemical Mohometry and Secular Change in Arc Magmatism and Continent Formation. Chemical Geology, 659: 122142. https://doi.org/10.1016/j.chemgeo.2024.122142
|
Rowley, D. B., Currie, B. S., 2006. Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 439: 677-681. https://doi.org/10.1038/nature04506.
|
Rowley, D. B., Pierrehumbert, R. T., Currie, B. S., 2001. A New Approach to Stable Isotope-Based Paleoaltimetry: Implications for Paleoaltimetry and Paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188(1-2): 253-268. https://doi.org/10.1016/s0012-821x(01)00324-7
|
Stirling, J. E., Denyszyn, S. W., Loucks, R. R., et al., 2023. Formation of Lower Arc Crust by Magmatic Underplating Revealed by High-Precision Geochronology. Geology, 51(12): 1101-1105. https://doi.org/10.1130/G51375.1
|
Sun, W. D., Xie, G. Z., Zhang, L. P., et al., 2021. The Onset of Plate Subduction and the Evolution of Continental Crust. Acta Geologica Sinica, 95(1): 32-41(in Chinese with English abstract).
|
Sundell, K., Laskowski, A., Kapp, P., et al., 2021. Jurassic to Neogene Quantitative Crustal Thickness Estimates in Southern Tibet. GSA Today, 31(6): 4-10. https://doi.org/10.1130/gsatg461a.1
|
Sundell, K. E., George, S. W. M., Carrapa, B., et al., 2022. Crustal Thickening of the Northern Central Andean Plateau Inferred from Trace Elements in Zircon. Geophysical Research Letters, 49(3): e96443. https://doi.org/10.1029/2021gl096443
|
Sundell, K. E., Laskowski, A. K., Howlett, C., et al., 2024. Episodic Late Cretaceous to Neogene Crustal Thickness Variation in Southern Tibet. Terra Nova, 36(1): 45-52. https://doi.org/10.1111/ter.12689
|
Tang, M., Chu, X., Hao, J. H., et al., 2021a. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876
|
Tang, M., Ji, W. Q., Chu, X., et al., 2021b. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons. Geology, 49(1): 76-80. https://doi.org/10.1130/g47745.1
|
Triantafyllou, A., Ducea, M. N., Jepson, G., et al., 2023. Europium Anomalies in Detrital Zircons Record Major Transitions in Earth Geodynamics at 2.5 Ga and 0.9 Ga. Geology, 51(2): 141-145. https://doi.org/10.1130/g050720.1
|
Wang, W., Jing, L. Z., Zeng, L. S., et al., 2022. Crustal Thickness and Paleo-Elevation in SE Tibet during the Eocene-Oligocene: Insights from Whole-Rock La/Yb Ratios. Tectonophysics, 839: 229523. https://doi.org/10.1016/j.tecto.2022.229523
|
Wells, M. L., Hoisch, T. D., Cruz-Uribe, A. M., et al., 2012. Geodynamics of Synconvergent Extension and Tectonic Mode Switching: Constraints from the Sevier-Laramide Orogen. Tectonics, 31(1).
|
Xiong, Z. Y., Ding, L., Xie, J., 2019. Carbonate Clumped Isotope(Δ47) Thermometry and Its Application in Paleoelevation Reconstruction. Chinese Science Bulletin, 64(16): 1722-1737(in Chinese). doi: 10.1360/N972019-00032
|
Xiong, Z. Y., Liu, X. H., Ding, L., et al., 2022. The Rise and Demise of the Paleogene Central Tibetan Valley. Science Advances, 8(6): eabj0944. https://doi.org/10.1126/sciadv.abj0944
|
Yakymchuk, C., Holder, R. M., Kendrick, J., et al., 2023. Europium Anomalies in Zircon: A Signal of Crustal Depth? Earth and Planetary Science Letters, 622: 118405.
|
Yang, J. M., Cao, W. R., Yuan, X. P., et al., 2023. Erosion-Driven Isostatic Flow and Crustal Diapirism: Analytical and Numerical Models with Implications for the Evolution of the Eastern Himalayan Syntaxis, Southern Tibet. Tectonics, 42(8): e2022TC007717. https://doi.org/10.1029/2022tc007717
|
Zeng, Y. C., Ducea, M. N., Xu, J. F., et al., 2021. Negligible Surface Uplift Following Foundering of Thickened Central Tibetan Lower Crust. Geology, 49(1): 45-50. https://doi.org/10.1130/g48142.1
|
Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3: 3413. https://doi.org/10.1038/srep03413
|
Zheng, Y. F., Chen, R. X., Gao, P., 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28(in Chinese with English abstract).
|
Zheng, Y. F., Chen, Y. X., Chen, R. X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effect. Scientia Sinica Terrae, 52(7): 1213-1242 (in Chinese). doi: 10.1360/SSTe-2022-0076
|
Zhu, D. C., Wang, Q., Cawood, P. A., et al., 2017. Raising the Gangdese Mountains in Southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223. https://doi.org/10.1002/2016jb013508
|
丁林, 许强, 张利云, 等, 2009. 青藏高原河流氧同位素区域变化特征与高度预测模型建立. 第四纪研究, 29(1): 1-12.
|
莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160
|
孙卫东, 谢国治, 张丽鹏, 等, 2021. 板块俯冲起始与大陆地壳演化. 地质学报, 95(1): 32-41.
|
熊中玉, 丁林, 谢静, 2019. 碳酸盐耦合同位素(Δ47)温度计及其在古高度重建中的应用. 科学通报, 64(16): 1722-1737.
|
郑永飞, 陈仁旭, 高彭, 2024. 大陆碰撞带深熔变质与花岗岩成因. 地球科学, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
|
郑永飞, 陈伊翔, 陈仁旭, 等, 2022. 汇聚板块边缘构造演化及其地质效应. 中国科学: 地球科学, 52(7): 1213-1242.
|