• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 4
    Apr.  2025
    Turn off MathJax
    Article Contents
    Zhao Sibo, Liu Yingchao, Yue Longlong, Ma Wang, Zheng Ning, Tang Bolang, 2025. Types, Characteristics, and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super-Large Huize Pb-Zn Orefield. Earth Science, 50(4): 1353-1379. doi: 10.3799/dqkx.2024.076
    Citation: Zhao Sibo, Liu Yingchao, Yue Longlong, Ma Wang, Zheng Ning, Tang Bolang, 2025. Types, Characteristics, and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super-Large Huize Pb-Zn Orefield. Earth Science, 50(4): 1353-1379. doi: 10.3799/dqkx.2024.076

    Types, Characteristics, and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super-Large Huize Pb-Zn Orefield

    doi: 10.3799/dqkx.2024.076
    • Received Date: 2024-01-20
      Available Online: 2025-05-10
    • Publish Date: 2025-04-25
    • The origin of dolomite in dolostone-hosted Mississippi valley-type (MVT) lead-zinc deposits has long been controversial. The Huize super-large lead-zinc deposit, situated in the Sichuan-Yunnan-Guizhou adjacent region, exemplifies a typical MVT deposit hosted within dolostones and dolomitized limestones, making it an ideal object for addressing the aforementioned issue. This study focuses on disseminated, banded, and blocky distal dolomite from the Lower Carboniferous Baizuo Formation of the Huize orefield. Through comprehensive petrographic analysis and cathodoluminescence (CL) microscopy, coupled with the examination of major elements, LA-ICP-MS in-situ compositional data, and carbon, oxygen, and strontium isotopic analyses, it systematically investigates the genesis of these dolomites. These characteristics indicate that the dolomite in the Baizuo Formation underwent formation through three distinct stages. The first stage—replacement powdered dolomite (Dol 1)—exhibits selective and fabric-retentive replacement, characterized by a blue-purple CL, a MgO/CaO ratio of 0.68, low iron (Fe) and manganese (Mn) contents, weak light rare earth element (LREE) depletion, negative europium (Eu) and cerium (Ce) anomalies, and a positive lanthanum (La) anomaly. The second stage—replacement fine-coarse crystalline dolomite (Dol 2)—shows fabric-retentive replacement and recrystallization, displaying a dark red-orange CL, a MgO/CaO ratio of 0.71, higher Fe and Mn contents compared to the first stage, slight LREE depletion, a negative Eu anomaly, and slightly negative to positive Ce anomalies. C-O and Sr isotopes fall within the range of Early Carboniferous seawater. The third stage—coarse crystalline dolomite cement (Dol 3)—fills cavities in dolostone, exhibiting alternating dark red and bright red CL bands, an average MgO/CaO ratio of 0.68, higher Fe and Mn contents, enriched middle rare earth elements (MREE), negative Eu anomalies, and no Ce anomalies. The results indicate that dolomitizing fluid in the first stage originated from localized oxidizing seawater. In the second stage, the dolomitization fluid comprised oxidizing to weakly oxidizing, saline shallow-burial pore waters. The third stage dolomitizing fluid is suggested to be Mn-rich deep-burial pore waters or residual seawater in a reducing environment. Based on the findings, in this paper it establishes the formation process of widespread dolomitization in the Baizuo Formation of the Huize Pb-Zn orefield. (1) The seepage-reflux dolomitization in near-surface to shallow burial environments lead to the formation of Dol 1 and Dol 2; (2) Recrystallization processes within burial environments alter dolomiteto form coarse crystalline dolostone; (3) During the post-diagenetic deep burial stage, Dol 3 precipitates in the cavities of the coarse crystalline dolostone. Therefore, the dolomite at both the proximal and distal extents exhibit similar characteristics and genetic mechanisms, and the dolomite in proximity to the ore body may have undergone alteration by hydrothermal fluids.

       

    • loading
    • Bai, X., Zhong, Y. J., Huang, K. K., et al., 2022. Recrystallization of Dolomite and Its Geological Significance. Acta Petrologica et Mineralogica, 41(4): 804-817(in Chinese with English abstract).
      Bau, M., Möller, P., Dulski, P., 1997. Yttrium and Lanthanides in Eastern Mediterranean Seawater and Their Fractionation during Redox-Cycling. Marine Chemistry, 56(1-2): 123-131. https://doi.org/10.1016/S0304-4203(96)00091-6
      Cai, W. K., Liu, J. H., Zhou, C. H., et al., 2021. Structure, Genesis and Resources Efficiency of Dolomite: New Insights and Remaining Enigmas. Chemical Geology, 573: 120191. https://doi.org/10.1016/j.chemgeo.2021.120191
      Chafetz, H. S., Zhang, J., 1998. Authigenic Euhedral Megaquartz Crystals in a Quaternary Dolomite. Journal of Sedimentary Research, 68(5): 994-1000. https://doi.org/10.2110/jsr.68.994
      Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013
      Chen, S. J., Cai, J. F., Wang, Z. J., et al., 1984. Significance of Biostratigraphy to Ore-Controlling of Shanshulin Pb-Zn Deposit. Geology and Prospecting, 20(11): 16-19, 24(in Chinese with English abstract).
      Cui, G. S., Bao, Z. W., Li, Q., 2023. The Origin of Hydrothermal Dolomite in the Huize Giant Pb-Zn Ore-Field in the Yunnan Province and Its Geological Implications. Geotectonica et Metallogenia, 47(2): 361-375(in Chinese with English abstract).
      Davies, G. R., Smith, L. B. Jr, 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11): 1641-1690. https://doi.org/10.1306/05220605164
      de Oliveira, S. B., Leach, D. L., Juliani, C., et al., 2019. The Zn-Pb Mineralization of Florida Canyon, an Evaporite-Related Mississippi Valley-Type Deposit in the Bongará District, Northern Peru. Economic Geology, 114(8): 1621-1647. https://doi.org/10.5382/econgeo.4690
      Du, Y., Fan, T. L., Machel, H. G., et al., 2018. Genesis of Upper Cambrian-Lower Ordovician Dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several Limitations from Petrology, Geochemistry, and Fluid Inclusions. Marine and Petroleum Geology, 91: 43-70. https://doi.org/10.1016/j.marpetgeo.2017.12.023
      Friedman, I., O'Neil, J. R., 1977. Data of Geochemistry: Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. Chapter Kk. US Government Printing Office: 440.
      Guo, C., Chen, D. Z., Qing, H. R., et al., 2020. Early Dolomitization and Recrystallization of the Lower-Middle Ordovician Carbonates in Western Tarim Basin (NW China). Marine and Petroleum Geology, 111: 332-349. https://doi.org/10.1016/j.marpetgeo.2019.08.017
      Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012
      Han, R. S., Liu, C. Q., Huang, Z. L., et al., 2007. Geological Features and Origin of the Huize Carbonate-Hosted Zn-Pb-(Ag) District, Yunnan, South China. Ore Geology Reviews, 31(1-4): 360-383. https://doi.org/10.1016/j.oregeorev.2006.03.003
      Harper, D. D., Borrok, D. M., 2007. Dolomite Fronts and Associated Zinc-Lead Mineralization, USA. Economic Geology, 102(7): 1345-1352. https://doi.org/10.2113/gsecongeo.102.7.1345
      Heijlen, W., Muchez, P., Banks, D. A., et al., 2003. Carbonate-Hosted Zn-Pb Deposits in Upper Silesia, Poland: Origin and Evolution of Mineralizing Fluids and Constraints on Genetic Models. Economic Geology, 98(5): 911-932. https://doi.org/10.2113/gsecongeo.98.5.911
      Hodson, K. R., Crider, J. G., Huntington, K. W., 2016. Temperature and Composition of Carbonate Cements Record Early Structural Control on Cementation in a Nascent Deformation Band Fault Zone: Moab Fault, Utah, USA. Tectonophysics, 690: 240-252. https://doi.org/10.1016/j.tecto.2016.04.032
      Hou, Y., Azmy, K., Berra, F., et al., 2016. Origin of the Breno and Esino Dolomites in the Western Southern Alps (Italy): Implications for a Volcanic Influence. Marine and Petroleum Geology, 69: 38-52. https://doi.org/10.1016/j.marpetgeo.2015.10.010
      Hu, R. Z., Zhou, M. F., 2012. Multiple Mesozoic Mineralization Events in South China: An Introduction to the Thematic Issue. Mineralium Deposita, 47(6): 579-588. https://doi.org/10.1007/s00126-012-0431-6
      Hu, Y. G., 2000. Occurrence, Source of Ore-Forming Materials and Metallogenic Mechanism of Silver in Yinchangpo Silver Polymetallic Deposit, Guizhou Province (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
      Huang, H. X., Wen, H. G., Wen, L., et al., 2023. Multistage Dolomitization of Deeply Buried Dolomite in the Lower Cambrian Canglangpu Formation, Central and Northern Sichuan Basin. Marine and Petroleum Geology, 152: 106261. http://doi.org /10.1016/j.marpetgeo.2023.106261
      Huang, Z. L., Li, W. B., Chen, J., et al., 2004. Carbon and Oxygen Isotope Geochemistry of the Huize Superlarge Pb-Zn Ore Deposits in Yunnan Province. Geotectonica et Metallogenia, 28(1): 53-59(in Chinese with English abstract).
      Kaczmarek, S. E., Sibley, D. F., 2014. Direct Physical Evidence of Dolomite Recrystallization. Sedimentology, 61(6): 1862-1882. https://doi.org/10.1111/sed.12119
      Kaczmarek, S. E., Thornton, B. P., 2017. The Effect of Temperature on Stoichiometry, Cation Ordering, and Reaction Rate in High-Temperature Dolomitization Experiments. Chemical Geology, 468: 32-41. https://doi.org/10.1016/j.chemgeo.2017.08.004
      Leach, D. L., Sangster, D. F., Kelley, K. D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., One Hundredth Anniversary Volume. Society of Economic Geologists: 1905-2005. https://doi.org/10.5382/av100.18
      Leach, D. L., Song, Y. C., 2019. Chapter 9 Sediment-Hosted Zinc-Lead and Copper Deposits in China. In: Chang, Z. S., Goldfarb, R. J., eds., Mineral Deposits of China. Society of Economic Geologists: 325-409. https://doi.org/10.5382/sp.22.09
      Li, W. B., Huang, Z. L., Yin, M. D., 2007. Isotope Geochemistry of the Huize Zn-Pb Ore Field, Yunnan Province, Southwestern China: Implication for the Sources of Ore Fluid and Metals. Geochemical Journal, 41(1): 65-81. https://doi.org/10.2343/geochemj.41.65
      Li, W. Q., Liu, H. C., Li, P. P., et al., 2023. Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science, 48(9): 3360-3377(in Chinese with English abstract).
      Li, Y. L., Xu, W., Fu, M. Y., et al., 2021. Dolomitization Controlled by Paleogeomorphology in the Epicontinental Sea Environment: A Case Study of the 5th Sub-Member in 5 Member of the Ordovician Majiagou Formation in Daniudi Gas Field, Ordos Basin. Minerals, 11(8): 827. https://doi.org/10.3390/min11080827
      Li, Z. T., Han, R. S., Yan, Q. W., 2017. Mineralization-Alteration Zoning Regularity and Structural Ore-Controlling Role in the Huize Super-Large Sized Ge-Ag-Rich Pb-Zn Deposit, Yunnan Province. Geology in China, 44(2): 316-330(in Chinese with English abstract).
      Liu, H. C., Lin, W. D., 1999. Regularity Research of Ag. Zn. Pb Ore Deposits in Northeast Yunnan Province. Yunnan University Press, Kunming (in Chinese).
      Liu, W. H., Spinks, S. C., Glenn, M., et al., 2021. How Carbonate Dissolution Facilitates Sediment-Hosted Zn-Pb Mineralization. Geology, 49(11): 1363-1368. https://doi.org/10.1130/g49056.1
      Liu, X. M., Hardisty, D. S., Lyons, T. W., et al., 2019. Evaluating the Fidelity of the Cerium Paleoredox Tracer during Variable Carbonate Diagenesis on the Great Bahamas Bank. Geochimica et Cosmochimica Acta, 248: 25-42. https://doi.org/10.1016/j.gca.2018.12.028
      Lukoczki, G., Haas, J., Gregg, J. M., et al., 2019. Multi-Phase Dolomitization and Recrystallization of Middle Triassic Shallow Marine-Peritidal Carbonates from the Mecsek MTS. (SW Hungary), as Inferred from Petrography, Carbon, Oxygen, Strontium and Clumped Isotope Data. Marine and Petroleum Geology, 101: 440-458. https://doi.org/10.1016/j.marpetgeo.2018.12.004
      Ma, H. J., Zhang, S. T., Cheng, X. F., et al., 2014. Geochemical Characteristics and Genetic Analysis of Carboniferous Dolomite in Huize Basin, Yunnan. Acta Sedimentologica Sinica, 32(1): 118-125(in Chinese with English abstract).
      Machel, H. G., Braithwaite, C. J. R., Rizzi, G., et al., 2004. Concepts and Models of Dolomitization: A Critical Reappraisal. In: The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs, Geological Society of London. http://doi.org/10.1144/gsl.Sp.2004.235.01.02.
      McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021. https://doi.org/10.1029/2000GC000109
      Mii, H. S., 1996. Late Paleozoic Environments: Carbon and Oxygen Isotope Records and Elemental Concentrations of Brachiopod Shells (Dissertation). Texas A & M University, Texas.
      Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. https://doi.org/10.1016/S0016-7037(03)00422-8
      Planavsky, N., Bekker, A., Rouxel, O. J., et al., 2010. Rare Earth Element and Yttrium Compositions of Archean and Paleoproterozoic Fe Formations Revisited: New Perspectives on the Significance and Mechanisms of Deposition. Geochimica et Cosmochimica Acta, 74(22): 6387-6405. https://doi.org/10.1016/j.gca.2010.07.021
      Qiao, Z. F., Zhang, T. F., He, X. Y., et al., 2023. Development and Exploration Direction of Bedded Massive Dolomite Reservoir of Lower Ordovician Penglaiba Formation in Tarim Basin. Earth Science, 48(2): 673-689(in Chinese with English abstract).
      Rieger, P., Magnall, J. M., Gleeson, S. A., et al., 2022. Differentiating between Hydrothermal and Diagenetic Carbonate Using Rare Earth Element and Yttrium (REE+Y) Geochemistry: A Case Study from the Paleoproterozoic George Fisher Massive Sulfide Zn Deposit, Mount Isa, Australia. Mineralium Deposita, 57(2): 187-206. https://doi.org/10.1007/s00126-021-01056-1
      Ryan, B. H., Kaczmarek, S. E., Rivers, J. M., 2021. Multi-Episodic Recrystallization and Isotopic Resetting of Early-Diagenetic Dolomites in Near-Surface Settings. Journal of Sedimentary Research, 91(1): 146-166. https://doi.org/10.2110/jsr.2020.056
      Ryan, B. H., Kaczmarek, S. E., Rivers, J. M., et al., 2022. Extensive Recrystallization of Cenozoic Dolomite during Shallow Burial: A Case Study from the Palaeocene-Eocene Umm Er Radhuma Formation and a Global Meta-Analysis. Sedimentology, 69(5): 2053-2079. https://doi.org/10.1111/sed.12982
      Shi, X. W., Jia, F. J., Ke, L. Y., et al., 2021. The Geochemical Characteristics of the C-O Isotope of the Huize Mine Area of Yunnan Province, China. Acta Mineralogica Sinica, 41(6): 657-667(in Chinese with English abstract).
      Stacey, J., Hollis, C., Corlett, H., et al., 2021. Burial Dolomitization Driven by Modified Seawater and Basal Aquifer-Sourced Brines: Insights from the Middle and Upper Devonian of the Western Canadian Sedimentary Basin. Basin Research, 33(1): 648-680. https://doi.org/10.1111/bre.12489
      Sun, Q. S., 2017. Study on Sequence Stratigraphy and Paleogeographic Evolution of Lower Part of Carboniferous-Permian Zisongdian in Northeast Yunnan and Its Adjacent Areas(Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).
      Tan, M., Huang, X. W., Wu, P., et al., 2023. Ore-Forming Process of the Huize Super-Large Pb-Zn Deposit, SW China: Constraints from In Situ Elements and S-Pb Isotopes. Ore Geology Reviews, 159: 105580. https://doi.org/10.1016/j.oregeorev.2023.105580
      Tian, L. D., Song, Y. C., Zhuang, L. L., et al., 2022. Characteristic and Genesis of Dolostone Reservoirs around the Proterozoic/Cambrian Boundary in the Upper Yangtze Block for Mississippi Valley-Type Zn-Pb Ores: A Review. Ore Geology Reviews, 150: 105179. https://doi.org/10.1016/j.oregeorev.2022.105179
      Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
      Voigt, M., Mavromatis, V., Oelkers, E. H., 2017. The Experimental Determination of REE Partition Coefficients in the Water-Calcite System. Chemical Geology, 462: 30-43. https://doi.org/10.1016/j.chemgeo.2017.04.024
      Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1-3): 1-81. https://doi.org/10.1016/S0012-8252(00)00022-2
      Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7
      Wright, W. R., Johnson, A. W., Shelton, K. L., et al., 2000. Fluid Migration and Rock Interactions during Dolomitisation of the Dinantian Irish Midlands and Dublin Basin. Journal of Geochemical Exploration, 69: 159-164. https://doi.org/10.1016/S0375-6742(00)00019-4
      Zhang, L., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 176-197. https://doi.org/10.1016/j.palaeo.2015.10.049
      Zhang, Y., Han, R. S., Wei, P. T., et al., 2017. Identification of Two Types of Metallogenic Fluids in the Ultra-Large Huize Pb-Zn Deposit, SW China. Geofluids, 2017: 6345810. https://doi.org/10.1155/2017/6345810
      Zhao, Y. Y., Li, S. Z., Li, D., et al., 2019. Rare Earth Element Geochemistry of Carbonate and Its Paleoenvironmental Implications. Geotectonica et Metallogenia, 43(1): 141-167(in Chinese with English abstract).
      Zhou, C. X., 1998. The Source of Mineralizing Metals, Geochemical Characterization of Ore Forming Solution, and Metallogenetic Mechanism of Qilinchang Zn-Pb Deposit, Northeastern Yunnan Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 17(1): 36-38(in Chinese with English abstract).
      Zhou, C. X., Wei, C. S., Guo, J. Y., et al., 2001. The Source of Metals in the Qilinchang Zn-Pb Deposit, Northeastern Yunnan, China: Pb-Sr Isotope Constraints. Economic Geology, 96(3): 583-598. https://doi.org/10.2113/gsecongeo.96.3.583
      Zhou, J. X., Xiang, Z. Z., Zhou, M. F., et al., 2018. The Giant Upper Yangtze Pb–Zn Province in SW China: Reviews, New Advances and a New Genetic Model. Journal of Asian Earth Sciences, 154: 280-315. https://doi.org/10.1016/j.jseaes.2017.12.032
      Zhuang, L. L., Song, Y. C., Leach, D., et al., 2023. Vanished Evaporites, Halokinetic Structure, and Zn-Pb Mineralization in the World-Class Angouran Deposit, Northwestern Iran. Geological Society of America Bulletin. https://doi.org/10.1130/b36910.1
      白璇, 钟怡江, 黄可可, 等, 2022. 白云石重结晶作用及其地质意义. 岩石矿物学杂志, 41(4): 804-817.
      陈士杰, 蔡继锋, 王志经, 等, 1984. 生物地层相对杉树林铅锌矿床的控矿意义. 地质与勘探, 20(11): 16-19, 24.
      崔广申, 包志伟, 李群, 2023. 云南会泽超大型铅锌矿田热液白云岩的成因及地质意义. 大地构造与成矿学, 47(2): 361-375.
      胡耀国. 2000. 贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制(博士学位论文). 贵阳: 中国科学院地球化学研究所.
      黄智龙, 李文博, 陈进, 等, 2004. 云南会泽超大型铅锌矿床C、O同位素地球化学. 大地构造与成矿学, 28(1): 53-59.
      李文奇, 刘汇川, 李平平, 等, 2023. 四川灯影组白云石化流体多样化特征及白云岩差异性成因. 地球科学, 48(9): 3360-3377. doi: 10.3799/dqkx.2022.126
      李孜腾, 韩润生, 闫庆文, 2017. 会泽超大型富锗银铅锌矿床矿化-蚀变分带规律及构造的控制作用. 中国地质, 44(2): 316-330.
      柳贺昌, 林文达, 1999. 滇东北铅锌银矿床规律研究. 昆明: 云南大学出版社.
      马宏杰, 张世涛, 程先锋, 等, 2014. 云南会泽石炭系摆佐组白云岩地球化学特征及其成因分析. 沉积学报, 32(1): 118-125.
      史显文, 贾福聚, 柯龙跃, 等, 2021. 云南会泽铅锌矿区C-O同位素地球化学特征. 矿物学报, 41(6): 657-667.
      孙琦森, 2017. 滇东北及其邻区石炭纪-二叠纪紫松阶下部层序地层学及古地理演化研究(博士学位论文). 昆明: 昆明理工大学.
      赵彦彦, 李三忠, 李达, 等, 2019. 碳酸盐(岩)的稀土元素特征及其古环境指示意义. 大地构造与成矿学, 43(1): 141-167.
      周朝宪, 1998. 滇东北麒麟厂锌铅矿床成矿金属来源、成矿流体特征和成矿机理研究. 矿物岩石地球化学通报, 17(1): 36-38.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(5)

      Article views (493) PDF downloads(42) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return