• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 1
    Jan.  2025
    Turn off MathJax
    Article Contents
    Pei Jianxiang, Wang Yu, 2025. Caprock Type and Sealing Mechanism of Quaternary Ultra Shallow Large Gas Reservoir in Deep Water Area of Qiongdongnan Basin, China. Earth Science, 50(1): 144-157. doi: 10.3799/dqkx.2024.080
    Citation: Pei Jianxiang, Wang Yu, 2025. Caprock Type and Sealing Mechanism of Quaternary Ultra Shallow Large Gas Reservoir in Deep Water Area of Qiongdongnan Basin, China. Earth Science, 50(1): 144-157. doi: 10.3799/dqkx.2024.080

    Caprock Type and Sealing Mechanism of Quaternary Ultra Shallow Large Gas Reservoir in Deep Water Area of Qiongdongnan Basin, China

    doi: 10.3799/dqkx.2024.080
    • Received Date: 2024-06-29
      Available Online: 2025-02-10
    • Publish Date: 2025-01-25
    • Caprock plays an important role in determining whether hydrocarbon accumulation is available. Previous studies of caprock mainly focus on the sealing ability of medium-deep consolidated rock, while less attention is paid to the shallow unconsolidated caprock, and the evaluation of caprock of shallow buried formations in deep water area is rare. Based on the research results of seismic interpretation, uniaxial stress test, logging evaluation, and cone penetration test in the deep water area of Qiongdongnan Basin, the development type and sealing ability of the caprock for the gas reservoir of the Ledong Formation in the L36 area are studied in this paper. The results show that: (1) There are three types of caprock (deep-sea mud, mass transport deposits, and hydrate-bearing strata) in the deep water area of the Ledong Formation, which could all have the effective sealing effect. (2) Based on the seismic and geological interpretation and experimental results, it is clear that the sealing capacity increases in the order of deep-sea mud, mass transport deposits, and hydrate-bearing strata; and the deep-sea mud can seal 59 m hydrocarbon at 200 m below seafloor, which is the threshold of sealing ability for the main target layer in the study area. (3) The capillary sealing and hydraulic sealing plays a dominant role in the sealing mechanism of shallow buried caprock in the deep water area, under low temperature and high pressure environment, the saturated salt water sealing mechanism plays a characteristic role in increasing sealing capacity. The above results have been verified by drilling in the past two years, which not only provides a theoretical basis for the follow-up exploration and development of the Ledong Formation in Qiongdongnan Basin, but also can provide a useful reference for the natural gas exploration in other shallow buried areas in the deep water area.

       

    • loading
    • Algar, S., Milton, C., Upshall, H., et al., 2011. Mass-Transport Deposits of the Deepwater Northwestern Borneo Margin—Characterization from Seismic-Reflection, Borehole, and Core Data with Implications for Hydrocarbon Exploration and Exploitation. In: Shipp, R. C., Weimer, P., Posamentier, H. W., eds., Mass-Transport Deposits in Deepwater Settings. SEPM (Society for Sedimentary Geology), Tulsa, 351-366. https://doi.org/10.2110/sepmsp.096.351
      Amy, L. A., 2019. A Review of Producing Fields Inferred to have Upslope Stratigraphically Trapped Turbidite Reservoirs: Trapping Styles (Pure and Combined), Pinch-out Formation, and Depositional Setting. Bulletin of the American Association of Petroleum Geologists, 103(12): 2861-2889. https://doi.org/10.1306/02251917408
      Baur, F., Scheirer, A. H., Peters, K. E., 2018. Past, Present, and Future of Basin and Petroleum System Modeling. AAPG Bulletin, 102(4): 549-561. https://doi.org/10.1306/08281717049
      Bhatnagar, P., Verma, S., Bianco, R., 2019. Characterization of Mass Transport Deposits Using Seismic Attributes: Upper Leonard Formation, Permian Basin. Interpretation, 7(4): SK19-SK32. https://doi.org/10.1190/int-2019-0036.1
      Bull, S., Cartwright, J., Huuse, M., 2009. A Review of Kinematic Indicators from Mass-Transport Complexes Using 3D Seismic Data. Marine and Petroleum Geology, 26(7): 1132-1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
      Byerlee, J., 1978. Friction of Rocks. Pure and Applied Geophysics, 116: 615-626. https://doi.org/10.1007/BF00876528
      Cardona, S., Kobayashi, H., Wood, L., et al., 2022. Assessing the Sealing Quality of Submarine Mass Transport Complexes and Deposits. Marine and Petroleum Geology, 143: 105748. https://doi.org/10.1016/j.marpetgeo.2022.105748
      Cardona, S., Wood, L. J., Day-Stirrat, R. J., et al., 2016. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs. In: Lamarche, G., Mountjoy, J., Bull, S., et al., eds., Advances in Natural and Technological Hazards Research. Springer International Publishing, Cham, 27-37. https://doi.org/10.1007/978-3-319-20979-1_3
      Cartwright, J., Huuse, M., Aplin, A., 2007. Seal Bypass Systems. AAPG Bulletin, 91: 1141-1166. https://doi.org/10.1306/04090705181
      Castillo, D. A., Bishop, D. J., Donaldson, I., et al., 2000. Trap Integrity in the Lam in Aria High-Nancar Trough Region, Timor Sea: Prediction of Fault Seal Failure Using well-Constrained Stress Tensors and Fault Surfaces Interpreted from 3D Seismic. The APPEA Journal, 40(1): 151. https://doi.org/10.1071/aj99009
      Downey, M. W., 1984. Evaluating Seals for Hydrocarbon Accumulations. AAPG Bulletin, 68: 1752-1763. https://doi.org/10.1306/ad461994-16f7-11d7-8645000102c1865d
      Fryer, R. C., Jobe, Z. R., 2019. Quantification of the Bed-Scale Architecture of Submarine Depositional Environments. The Depositional Record, 5(2): 192-211. https://doi.org/10.1002/dep2.70
      Godo, T. J., 2006. Identification of Stratigraphic Traps with Subtle Seismic Amplitude Effects in Miocene Channel/Levee Sand Systems, NE Gulf of Mexico. Geological Society, London, Special Publications, 254(1): 127-151. https://doi.org/10.1144/gsl.sp.2006.254.01.07
      Jackson, A., Stright, L., Hubbard, S. M., et al., 2019. Static Connectivity of Stacked Deep-Water Channel Elements Constrained by High-Resolution Digital Outcrop Models. AAPG Bulletin, 103(12): 2943-2973. https://doi.org/10.1306/03061917346
      Jia, R., 2018. Integrity of Caprock in Yingqiong Basin and Its Relationship with Natural Gas Accumulation (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract).
      Jiang, Y. L., 1998. Discussion on the Relationship between the Thickness of Caprock and the Height of Hydrocarbon Column Covered by It. Natural Gas Industry, 18(2): 20-23 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.1998.02.007
      Johnson, R. C., Birdwell, J., Brownfield, M., et al., 2015. Mass-Movement Deposits in the Lacustrine Eocene Green River Formation, Piceance Basin, Western Colorado. U. S. Geological Survey, Reston, Virginia. https://doi.org/10.3133/ofr20151044. Reston
      Kessler, F., Jong, J., 2018. Hydrocarbon Retention in Clastic Reservoirs of NW Borneo-Examples of Hydrocarbon Trap, Reservoir, Seal and Implications on Hydrocarbon Column Length. Berita Sedimentologi, 40: 6-44.
      Li, F. J., 1982. Discussion on the Problem of Wellbore Stability. Oil Drilling & Production Technology, (7): 1-8 (in Chinese).
      Li, J., Yan, Q. T., Zhang, Y., et al., 2007. Particularity of Sealing Mechanism of Quaternary Biogas Caprock in Sanhu Area of Qaidam Basin. Scientia Sinica Terrae, 37(S2): 36-42 (in Chinese).
      Liu, Q. H., Li, Z. Y., Chen, H. H., et al., 2024. Current Geological Issues and Future Perspectives in Deep-Time Source-to-Sink Systems of Continental Rift Basins. Journal of Earth Science, 35(5): 1758-1764. https://doi.org/10.1007/s12583-024-0028-x
      Meckel, L. D., 2011. Reservoir Characteristics and Classification of Sand-Prone Submarine Mass-Transport Deposits. In: Shipp, R. C., Weimer, P., Posamentier, H. W., eds., Mass-Transport Deposits in Deepwater Settings. SEPM (Society for Sedimentary Geology), Tulsa, 423-452. https://doi.org/10.2110/sepmsp.096.423
      Pei, J. X., Song, P., Guo, M. G., et al., 2023. Sedimentary Evolution and Hydrocarbon Exploration Prospect of the Quaternary Central Canyon System in the Qiongdongnan Basin. Earth Science, 48(2): 451-464 (in Chinese with English abstract).
      Rayeva, N., Kosnazarova, N., Arykbayeva, Z., et al., 2014. Petroleum Systems Modeling and Exploration Risk Assessment for the Eastern Margin of the Precaspian Basin (Russian) In: SPE Annual Caspian Technical Conference and Exhibition. Society of Petroleum Engineers, Astana. https://doi.org/10.2118/172332-ru
      Rudolph, K. W., Goulding, F. J., 2017. Benchmarking Exploration Predictions and Performance Using 20+ Yr of Drilling Results: One Company's Experience. AAPG Bulletin, 101(2): 161-176. https://doi.org/10.1306/06281616060
      Schmatz, J., Vrolijk, P. J., Urai, J. L., 2010. Clay Smear in Normal Fault Zones-The Effect of Multilayers and Clay Cementation in Water-Saturated Model Experiments. Journal of Structural Geology, 32(11): 1834-1849. https://doi.org/10.1016/j.jsg.2009.12.006
      Sha, Z. B., Liang, J. Q., Zhang, G. X., et al., 2015. A Seepage Gas Hydrate System in Northern South China Sea: Seismic and Well Log Interpretations. Marine Geology, 366: 69-78. https://doi.org/10.1016/j.margeo.2015.04.006
      Shanmugam, G., Shrivastava, S. K., Das, B., 2009. Sandy Debrites and Tidalites of Pliocene Reservoir Sands in Upper-Slope Canyon Environments, Offshore Krishna-Godavari Basin (India): Implications. Journal of Sedimentary Research, 79(9): 736-756. https://doi.org/10.2110/jsr.2009.076
      Sun, Q. L., Alves, T. M., 2020. Petrophysics of Fine-Grained Mass-Transport Deposits: A Critical Review. Journal of Asian Earth Sciences, 192: 104291. https://doi.org/10.1016/j.jseaes.2020.104291
      Tänavsuu-Milkeviciene, K., Sarg, J. F., 2012. Evolution of an Organic-Rich Lake Basin-Stratigraphy, Climate and Tectonics: Piceance Creek Basin, Eocene Green River Formation. Sedimentology, 59(6): 1735-1768. https://doi.org/10.1111/j.1365-3091.2012.01324.x
      Wang, Y., Pei, J. X., Liu, Y., 2016. Caprock Sealing Mechanism of High-Temperature and Overpressure Gas Reservoirs in the Dongfang Block, Yinggehai Basin, South China. Geology and Minerals Resources South China, 32(4): 397-405 (in Chinese with English abstract).
      Watts, N. L., 1987. Theoretical Aspects of Cap-Rock and Fault Seals for Single- and Two-Phase Hydrocarbon Columns. Marine and Petroleum Geology, 4(4): 274-307. https://doi.org/10.1016/0264-8172(87)90008-0
      Welbon, A. I. F., Brockbank, P. J., Brunsden, D., et al., 2007. Characterizing and Producing from Reservoirs in Landslides: Challenges and Opportunities. Geological Society, London, Special Publications, 292(1): 49-74. https://doi.org/10.1144/sp292.3
      Xie, Y. H., 2019. Quantitative Evaluation of Sealing Capacity of High Temperature and Pressure Caprocks in Yinggehai Basin. Earth Science, 44(8): 2579-2589 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908001.htm
      Yang, J. X., Davies, R. J., Huuse, M., 2013. Gas Migration below Gas Hydrates Controlled by Mass Transport Complexes, Offshore Mauritania. Marine and Petroleum Geology, 48: 366-378. https://doi.org/10.1016/j.marpetgeo.2013.09.003
      Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Journal of Earth Science, 34(4): 951-965. https://doi.org/10.1007/s12583-023-2000-8
      贾茹, 2018. 莺琼盆地盖层完整性及与天然气成藏(博士学位论文). 大庆: 东北石油大学.
      蒋有录, 1998. 油气藏盖层厚度与所封盖烃柱高度关系问题探讨. 天然气工业, 18(2): 20-23. doi: 10.3321/j.issn:1000-0976.1998.02.007
      李凤九, 1982. 井壁稳定问题的探讨. 石油钻采工艺, (7): 1-8.
      李剑, 严启团, 张英, 等, 2007. 柴达木盆地三湖地区第四系生物气盖层封闭机理的特殊性. 中国科学: 地球科学, 37(S2): 36-42.
      裴健翔, 宋鹏, 郭明刚, 等, 2023. 琼东南盆地第四纪中央峡谷体系沉积演化与油气前景. 地球科学, 48(2): 451-464. doi: 10.3799/dqkx.2022.487
      汪洋, 裴健翔, 刘亿, 2016. 莺歌海盆地东方区高温超压气藏盖层封盖机制. 华南地质与矿产, 32(4): 397-405. doi: 10.3969/j.issn.1007-3701.2016.04.010
      谢玉洪, 2019. 莺歌海盆地高温高压盖层封盖能力定量评价. 地球科学, 44(8): 2579-2589. doi: 10.3799/dqkx.2019.095
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (289) PDF downloads(53) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return