• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Jiang Yiming, Wu Lulu, Qin Jun, Tang Xianjun, Zhang Yanzhen, Li Zheyu, Shen Chuanbo, 2024. Deciphering Tectonic Mechanism and Origin of T85 Horizon in Lishui Depression, East China Sea Basin. Earth Science, 49(12): 4450-4464. doi: 10.3799/dqkx.2024.084
    Citation: Jiang Yiming, Wu Lulu, Qin Jun, Tang Xianjun, Zhang Yanzhen, Li Zheyu, Shen Chuanbo, 2024. Deciphering Tectonic Mechanism and Origin of T85 Horizon in Lishui Depression, East China Sea Basin. Earth Science, 49(12): 4450-4464. doi: 10.3799/dqkx.2024.084

    Deciphering Tectonic Mechanism and Origin of T85 Horizon in Lishui Depression, East China Sea Basin

    doi: 10.3799/dqkx.2024.084
    • Received Date: 2024-07-28
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • To unravel the difference of rift evolution between the sub- and supra-T85 horizon, and illustrate the formation mechanism of the tectonic transition, the rift architecture, fault activity and spatio-temporal variations of subsidence were investigated by using high-quality seismic data and borehole data. Dividing by the T85 angular unconformity, the Lishui depression exhibits two distinct rift architecture: the underlying fault-controlled, wedge-shaped packages and the overlying saucer-shaped packages. Subsidence within the Lishui depression migrated westward during the faulting stage, while it progressively migrated eastward during the subsequent faulting and sagging stage. Together with the regional geodynamic context and advances in rift research, the study proposes that either the thermal subsidence caused by tectonic migration or the shallow response to the ductile deformation of lower crust resulted in the tectonic transition within the Lishui depression. The study significantly improves the understanding of rift evolution and its controlling factors.

       

    • loading
    • Bell, R. E., Jackson, C. A. L., Whipp, P. S., et al., 2014. Strain Migration during Multiphase Extension: Observations from the Northern North Sea. Tectonics, 33(10): 1936-1963. https://doi.org/10.1002/2014tc003551
      Claringbould, J. S., Bell, R. E., Jackson, C. A. L., et al., 2017. Pre-Existing Normal Faults have Limited Control on the Rift Geometry of the Northern North Sea. Earth and Planetary Science Letters, 475: 190-206. https://doi.org/10.1016/j.epsl.2017.07.014
      Cowie, P. A., Underhill, J. R., Behn, M. D., et al., 2005. Spatio-Temporal Evolution of Strain Accumulation Derived from Multi-Scale Observations of Late Jurassic Rifting in the Northern North Sea: A Critical Test of Models for Lithospheric Extension. Earth and Planetary Science Letters, 234(3/4): 401-419. https://doi.org/10.1016/j.epsl.2005.01.039
      do Amarante, F. B., Kuchle, J., Jackson, C. A. L., et al., 2024. The Cryptic Stratigraphic Record of the Syn- to Post-Rift Transition in the Offshore Campos Basin, SE Brazil. Basin Research, 36(1): e12820. https://doi.org/10.1111/bre.12820
      Gao, D. Z., Zhao, J. H., Bo, Y. L., et al., 2004. A Profile Study of Gravitative-Magnetic and Seismic Comprehensive Survey in the East China Sea. Chinese Journal of Geophysics, 47(5): 854-862 (in Chinese with English abstract).
      Huismans, R., Beaumont, C., 2011. Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins. Nature, 473: 74-78. https://doi.org/10.1038/nature09988
      Huismans, R., Beaumont, C., 2014. Rifted Continental Margins: The Case for Depth-Dependent Extension. Earth and Planetary Science Letters, 407: 148-162. https://doi.org/10.1016/j.epsl.2014.09.032
      Jiang, Y. M., He, X. J., Tang, X. J., et al., 2019. Material Composition of Diaoyu Islands Folded Zone and Reanalysis of Eastern Boundary of Prototype Basin of Xihu Sag in East China Sea. Earth Science, 44(3): 773-783 (in Chinese with English abstract).
      Karner, G. D., Gambôa, L. A. P., 2007. Timing and Origin of the South Atlantic Pre-Salt Sag Basins and Their Capping Evaporites. Geological Society, London, Special Publications, 285(1): 15-35. 10.1144/sp285.2
      Lei, C., Ye, J. R., Yin, S. Y., et al., 2024. Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones. Earth Science, 49(7): 2359-2372(in Chinese with English abstract).
      Li, L., Zhao, L., Zhong, D. L., 2013. Cenozoic Continental Intraplate Extension Basin-Mountain Coupling and Continental Collision: Evidences from Bohai Bay Basin, Its Peripheral Mountain and Tancheng-Lujiang Fault. Chinese Journal of Geology (Scientia Geologica Sinica), 48(2): 406-418(in Chinese with English abstract).
      Liu, H., Xu, C. H., Shen, W. L., et al., 2021. Tectonic Evolution Characteristics of Lishui Sag, East China Sea Shelf Basin. Petroleum Geology & Experiment, 43(6): 949-957, 985(in Chinese with English abstract).
      Liu, J. S., Xu, H. Z., Jiang, Y. M., et al., 2020. Mesozoic and Cenozoic Basin Structure and Tectonic Evolution in the East China Sea Basin. Acta Geologica Sinica, 94(3): 675-691 (in Chinese with English abstract).
      Ma, Q., Qin, J., Tang, X. J., et al., 2024. The Structural Characteristics and Sand Controlling Models of Xianqiao Low Uplift in Lishui Sag, East China Sea Shelf Basin. Journal of Yangtze University (Natural Science Edition), 21(1): 10-18, 85(in Chinese with English abstract).
      McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821x(78)90071-7
      Nottvedt, A., Gabrielsen, R. H., Steel, R. J., 1995. Tectonostratigraphy and Sedimentary Architecture of Rift Basins, with Reference to the Northern North Sea. Marine and Petroleum Geology, 12(8): 881-901. https://doi.org/10.1016/0264-8172(95)98853-w
      Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., et al., 2019. The Influence of Structural Inheritance and Multiphase Extension on Rift Development, the Northern North Sea. Tectonics, 38(12): 4099-4126. https://doi.org/10.1029/2019tc005756
      Privat, A. M. L J., Hodgson, D. M., Jackson, C. A. L., et al., 2021. Evolution from Syn-Rift Carbonates to Early Post-Rift Deep-Marine Intraslope Lobes: The Role of Rift Basin Physiography on Sedimentation Patterns. Sedimentology, 68(6): 2563-2605. https://doi.org/10.1111/sed.12864
      Qi, J. F., Yang, Q., 2007. Structural Styles of Extensional Basins and Their Main Controlling Factors of Dynamics. Oil & Gas Geology, 28(5): 634-640 (in Chinese with English abstract).
      Ramos, A., Pedrera, A., García-Senz, J., et al., 2023. Seismic Evidence for Ductile Necking of the Mid-Lower Crust beneath the Columbrets Basin (Western Mediterranean). Terra Nova, 35(5): 404-412. https://doi.org/10.1111/ter.12664
      Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361(in Chinese with English abstract).
      Suo, Y. H, Li, S. Z., Dai, L. M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618(in Chinese with English abstract).
      Wang, G. H., 2016. "Double Intense Effect" of Tectonic Activity and Its Control on Deposition in Dongying Formation, Nanpu Sag (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      White, N., McKenzie, D., 1988. Formation of the "Steer's Head" Geometry of Sedimentary Basins by Differential Stretching of the Crust and Mantle. Geology, 16(3): 250-253. https://doi.org/10.1130/0091-7613(1988)0160250: fotssh>2.3.co;2 doi: 10.1130/0091-7613(1988)0160250:fotssh>2.3.co;2
      Whiting, L., Haughton, P. D. W., Shannon, P. M., 2021. From Rifting to Hyperextension: Upper Jurassic-Lower Cretaceous Tectono-Stratigraphy of the Porcupine Basin, Irish Atlantic Margin. Basin Research, 33(2): 1662-1696. https://doi.org/10.1111/bre.12530
      Wu, L. L., Mei, L. F., Paton, D. A., et al., 2020. Late Cretaceous-Cenozoic Intraplate Extension and Tectonic Transitions in Eastern China: Implications for Intraplate Geodynamic Origin. Marine and Petroleum Geology, 117: 104379. https://doi.org/10.1016/j.marpetgeo.2020.104379
      Wu, L. L., Mei, L. F., Liu, Y. S., et al., 2018a. The Stratigraphic and Structural Record of the Cretaceous Jianghan Basin, Central China: Implications for Initial Rifting Processes and Geodynamics. Cretaceous Research, 90: 21-39. https://doi.org/10.1016/j.cretres.2018.03.028
      Wu, L. L., Mei, L. F., Paton, D. A., et al., 2018b. Deciphering the Origin of the Cenozoic Intracontinental Rifting and Volcanism in Eastern China Using Integrated Evidence from the Jianghan Basin. Gondwana Research, 64: 67-83. https://doi.org/10.1016/j.gr.2018.07.004
      Wu, L. L., Shen, C. B., Paton, D. A., et al., 2022. The Nature of the Late Syn-Rift Sag Basin (LSSB). Terra Nova, 34(6): 512-522. https://doi.org/10.1111/ter.12616
      Wu, L. L., Shen, C. B., Paton, D. A., et al., 2023. A Rift-Scale View at Strain Partitioning during Multiphase Rifting: Insights from the Hailar Basin, Northeast Asia. Basin Research, 35(4): 1362-1385. https://doi.org/10.1111/bre.12757
      Wu, Z. Q., Zhang, X. H., Meng, X. J., et al., 2021. A Profile Study of OBS Deep Geological Detect in the East China Sea. Chinese Science Bulletin, 66(21): 2728-2744(in Chinese).
      Xie, Y. H., Ye, Y. F., Huang, X. G., et al., 2024. Development Direction of Offshore Seismic Exploration Technology. Earth Science, 49(7): 2301-2314(in Chinese with English abstract).
      Xin, Y. F., Guo, X. W., Wen, Z. H., et al., 2015. Cenozoic Shallow Tectonic Migration and the Deep Dynamic Mechanism in the Bohai Sea. Progress in Geophysics, 30(4): 1535-1543 (in Chinese with English abstract).
      Xu, W., Qiu, N. S., Li, Y., 2019. Evolution of the Cenozoic Thermal Lithosphere of the Jiyang Sub-Basin, Bohai Bay Basin: Implications for the Lithospheric Thinning Mechanism. Tectonophysics, 773: 228229. https://doi.org/10.1016/j.tecto.2019.228229
      Zhang, T., Zhang, J. P., Zhang, S. L., et al., 2015. Tectonic Characteristics and Evolution of the West Depression Belt of the East China Sea Shelf Basin. Marine Geology Frontiers, 31(5): 1-7(in Chinese with English abstract).
      Zhao, R., Chen, S., Wang, H., et al., 2019. Intense Faulting and Downwarping of Nanpu Sag in the Bohai Bay Basin, Eastern China: Response to the Cenozoic Stagnant Pacific Slab. Marine and Petroleum Geology, 109: 819-838. https://doi.org/10.1016/j.marpetgeo.2019.06.034
      Zhao, Z. G., Wang, P., Qi, P., et al., 2016. Regional Background and Tectonic Evolution of East China Sea Basin. Earth Science, 41(3): 546-554 (in Chinese with English abstract).
      Zhou, X. H., Jiang, Y. M., Tang, X. J., 2019. Tectonic Setting, Prototype Basin Evolution and Exploration Enlightenment of Xihu Sag in East China Sea Basin. China Offshore Oil and Gas, 31(3): 1-10(in Chinese with English abstract).
      Zhu, W. L., Wu, J. F., Zhang, G. C., et al., 2015. Discrepancy Tectonic Evolution and Petroleum Exploration in China Offshore Cenozoic Basins. Earth Science Frontiers, 22(1): 88-101(in Chinese with English abstract).
      Zhu, W. L., Zhong, K., Fu, X. W., et al., 2019. The Formation and Evolution of the East China Sea Shelf Basin: A New View. Earth-Science Reviews, 190: 89-111. https://doi.org/10.1016/j.earscirev.2018.12.009
      高德章, 赵金海, 薄玉玲, 等, 2004. 东海重磁地震综合探测剖面研究. 地球物理学报, 47(5): 854-862.
      蒋一鸣, 何新建, 唐贤君, 等, 2019. 钓鱼岛隆褶带物质构成及东海西湖凹陷原型盆地东边界再认识. 地球科学, 44(3): 773-783. doi: 10.3799/dqkx.2018.293
      雷闯, 叶加仁, 殷世艳, 等, 2024. 东海盆地丽水凹陷古气候和古环境对有机质富集的约束: 来自古新统泥岩的元素地球化学证据. 地球科学, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011
      李理, 赵利, 钟大赉, 2013. 新生代大陆板内伸展盆—山耦合与大陆碰撞效应: 以渤海湾盆地济阳坳陷、周缘隆起及边界断裂构造演化为例. 地质科学, 48(2): 406-418.
      刘欢, 许长海, 申雯龙, 等, 2021. 东海陆架盆地丽水凹陷构造演化特征. 石油实验地质, 43(6): 949-957, 985.
      刘金水, 许怀智, 蒋一鸣, 等, 2020. 东海盆地中、新生代盆架结构与构造演化. 地质学报, 94(3): 675-691.
      马清, 覃军, 唐贤君, 等, 2024. 东海盆地丽水凹陷仙桥低凸起构造特征及其控砂模式. 长江大学学报(自然科学版), 21(1): 10-18, 85.
      漆家福, 杨桥, 2007. 伸展盆地的结构形态及其主控动力学因素. 石油与天然气地质, 28(5): 634-640.
      任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618.
      王观宏, 2016. 南堡凹陷东营组堆积期构造活动的"双强效应"及其对沉积的控制(博士学位论文). 武汉: 中国地质大学.
      吴志强, 张训华, 孟祥君, 等, 2021. 东海OBS深部地学探测断面及其地质意义. 科学通报, 66(21): 2728–2744.
      谢玉洪, 叶云飞, 黄小刚, 等, 2024. 海洋地震勘探技术发展方向. 地球科学, 49(7): 2301-2314. doi: 10.3799/dqkx.2024.070
      信延芳, 郭兴伟, 温珍河, 等, 2015. 渤海新生代盆地浅部构造迁移特征及其深部动力学机制探讨. 地球物理学进展, 30(4): 1535-1543.
      张田, 张建培, 张绍亮, 等, 2015. 东海陆架盆地西部坳陷带构造特征及演化. 海洋地质前沿, 31(5): 1-7.
      赵志刚, 王鹏, 祁鹏, 等, 2016. 东海盆地形成的区域地质背景与构造演化特征. 地球科学, 41(3): 546-554. doi: 10.3799/dqkx.2016.045
      周心怀, 蒋一鸣, 唐贤君, 2019. 西湖凹陷成盆背景、原型盆地演化及勘探启示. 中国海上油气, 31(3): 1-10.
      朱伟林, 吴景富, 张功成, 等, 2015. 中国近海新生代盆地构造差异性演化及油气勘探方向. 地学前缘, 22(1): 88-101.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (301) PDF downloads(36) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return