| Citation: | Ma Jing, Yan Yingying, Kong Shaofei, Wang Wuke, Tong Zhixuan, 2025. The Mitigation of SOA and O3 by VOCs Emission Reduction. Earth Science, 50(9): 3454-3467. doi: 10.3799/dqkx.2024.090 | 
Volatile organic compounds (VOCs) are the important precursors of ozone (O3) and secondary organic aerosols (SOA). However, current research on the mitigation of SOA and O3 by VOCs emission reduction is still insufficient. In this study, based on previous research and policies, a refined VOCs emission reduction potential covering four major emission sources was summarized. The benefits of VOCs emission reduction on SOA and ozone mitigation during the pollution events for five major air pollution regions in China were quantified using the WRF-Chem model. The results showed that the refined VOCs emission reduction strategy could reduce the SOA concentrations by 89.2%, 81.2%, 74.5%, 72.0%, and 77.3% in the North China Plain region, Yangtze River Delta, Central China, Pearl River Delta and Sichuan Basin, respectively. The reduction potential of industrial VOCs emissions is the main contributor to the SOA mitigation in these five regions. Nevertheless, such VOCs emission reduction could only reduce ozone concentration by less than 10%, due to the nonlinear photochemical processes of ozone and its precursors. The refined VOCs emission reduction strategy could reduce the O3 concentrations by 7.55, 9.05, 7.29, 4.31, and 3.15 μg/m3 in five areas, respectively. VOCs emission reduction of industry, transportation and residential could reduce the ozone concentration by 3.6% (3.48 μg/m3), 2.2% (2.07 μg/m3) and 1.1% (0.98 μg/m3), respectively, on average in the five main air pollution regions.
	                | 
					 Azmi, S., Sharma, M., 2022. Preventing Biogenic Secondary Organic Aerosols Formation in India. Atmospheric Environment, 290: 119352.  https://doi.org/10.1016/j.atmosenv.2022.119352 
						
					 | 
			
| 
					 Bai, X. X., Liu, W., Wu, B. B., et al., 2023. Emission Characteristics and Inventory of Volatile Organic Compounds from the Chinese Cement Industry Based on Field Measurements. Environmental Pollution, 316: 120600.  https://doi.org/10.1016/j.envpol.2022.120600 
						
					 | 
			
| 
					 Batterman, S., Xu, L. Z., Chen, F., et al., 2016. Characteristics of PM2.5 Concentrations across Beijing during 2013-2015. Atmospheric Environment, 145: 104-114.  https://doi.org/10.1016/j.atmosenv.2016.08.060 
						
					 | 
			
| 
					 Carter, W. P. L., 1990. A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds. Atmospheric Environment Part A General Topics, 24(3): 481-518.  https://doi.org/10.1016/0960-1686(90)90005-8 
						
					 | 
			
| 
					 Chou, M. D., Suarez, M. J., 1999. A Solar Radiation Parameterization for Atmospheric Studies. NASA Technical Reports Server, 15: 104606. 
						
					 | 
			
| 
					 Dhital, N. B., Yang, H. H., Wang, L. C., et al., 2019. VOCs Emission Characteristics in Motorcycle Exhaust with Different Emission Control Devices. Atmospheric Pollution Research, 10(5): 1498-1506.  https://doi.org/10.1016/j.apr.2019.04.007 
						
					 | 
			
| 
					 Duan, C. S., Liao, H., Wang, K. D., et al., 2023. The Research Hotspots and Trends of Volatile Organic Compound Emissions from Anthropogenic and Natural sources: A Systematic Quantitative Review. Environmental Research, 216: 114386.  https://doi.org/10.1016/j.envres.2022.114386 
						
					 | 
			
| 
					 Ek, M. B., Mitchell, K. E., Lin, Y., et al., 2003. Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. Journal of Geophysical Research: Atmospheres, 108(D22): 8851.  https://doi.org/10.1029/2002JD003296 
						
					 | 
			
| 
					 Emery, C., Liu, Z., Russell, A. G., et al., 2017. Recommendations on Statistics and Benchmarks to Assess Photochemical Model Performance. Journal of the Air & Waste Management Association, 67(5): 582-598.  https://doi.org/10.1080/10962247.2016.1265027 
						
					 | 
			
| 
					 Epping, R., Koch, M., 2023. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules, 28(4): 1598.  https://doi.org/10.3390/molecules28041598 
						
					 | 
			
| 
					 Gallus, W. A. Jr, Bresch, J. F., 2006. Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts. Monthly Weather Review, 134(9): 2632-2641.  https://doi.org/10.1175/mwr3198.1 
						
					 | 
			
| 
					 Gao, L. B., Wang, T. J., Ren, X. J., et al., 2021a. Subseasonal Characteristics and Meteorological Causes of Surface O3 in Different East Asian Summer Monsoon Periods over the North China Plain during 2014-2019. Atmospheric Environment, 264: 118704.  https://doi.org/10.1016/j.atmosenv.2021.118704 
						
					 | 
			
| 
					 Gao, M. P., Liu, W. W., Wang, H. L., et al., 2021b. Emission Factors and Characteristics of Volatile Organic Compounds (VOCs) from Adhesive Application in Indoor Decoration in China. Science of The Total Environment, 779: 145169.  https://doi.org/10.1016/j.scitotenv.2021.145169 
						
					 | 
			
| 
					 Gao, M., Gao, J. H., Zhu, B., et al., 2020. Ozone Pollution over China and India: Seasonality and Sources. Atmospheric Chemistry and Physics, 20(7): 4399-4414.  https://doi.org/10.5194/acp-20-4399-2020 
						
					 | 
			
| 
					 Grell, G. A., Dévényi, D., 2002. A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophysical Research Letters, 29(14): 38-1-38-4.  https://doi.org/10.1029/2002GL015311 
						
					 | 
			
| 
					 Guo, H., Ling, Z. H., Cheng, H. R., et al., 2017. Tropospheric Volatile Organic Compounds in China. Science of The Total Environment, 574: 1021-1043.  https://doi.org/10.1016/j.scitotenv.2016.09.116 
						
					 | 
			
| 
					 Hallquist, M., Wenger, J. C., Baltensperger, U., et al., 2009. The Formation, Properties and Impact of Secondary Organic Aerosol: current and Emerging Issues. Atmospheric Chemistry and Physics, 9(14): 5155-5236.  https://doi.org/10.5194/acp-9-5155-2009 
						
					 | 
			
| 
					 He, K., Fu, T., Zhang, B., et al., 2023. Examination of Long-Time Aging Process on Volatile Organic Compounds Emitted from Solid Fuel Combustion in a Rural Area of China. Chemosphere, 333: 138957.  https://doi.org/10.1016/j.chemosphere.2023.138957 
						
					 | 
			
| 
					 Huang, R. J., Zhang, Y. L., Bozzetti, C., et al., 2014. High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature, 514(7521): 218-222.  https://doi.org/10.1038/nature13774 
						
					 | 
			
| 
					 Huang, Y. S., Hsieh, C. C., 2019. Ambient Volatile Organic Compound Presence in the Highly Urbanized City: source Apportionment and Emission Position. Atmospheric Environment, 206: 45-59.  https://doi.org/10.1016/j.atmosenv.2019.02.046 
						
					 | 
			
| 
					 Hui, L. R., Liu, X. G., Tan, Q. W., et al., 2020. VOC Characteristics, Chemical Reactivity and Sources in Urban Wuhan, Central China. Atmospheric Environment, 224: 117340.  https://doi.org/10.1016/j.atmosenv.2020.117340 
						
					 | 
			
| 
					 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., et al., 2009. Evolution of Organic Aerosols in the Atmosphere. Science, 326(5959): 1525-1529.  https://doi.org/10.1126/science.1180353 
						
					 | 
			
| 
					 Jiménez, P. A., Dudhia, J., González-Rouco, J. F., et al., 2012. A Revised Scheme for the WRF Surface Layer Formulation. Monthly Weather Review, 140(3): 898-918.  https://doi.org/10.1175/mwr-d-11-00056.1 
						
					 | 
			
| 
					 Jiménez-López, A. M., Hincapié-Llanos, G. A., 2022. Identification of Factors Affecting the Reduction of VOC Emissions in the Paint industry: Systematic Literature Review-SLR. Progress in Organic Coatings, 170: 106945.  https://doi.org/10.1016/j.porgcoat.2022.106945 
						
					 | 
			
| 
					 Li, J. X., Wang, Z. X., Chen, L. L., et al., 2020. WRF-Chem Simulations of Ozone Pollution and Control Strategy in Petrochemical Industrialized and Heavily Polluted Lanzhou City, Northwestern China. Science of The Total Environment, 737: 139835.  https://doi.org/10.1016/j.scitotenv.2020.139835 
						
					 | 
			
| 
					 Li, J., Han, Z. W., Wu, J., et al., 2022a. Secondary Organic Aerosol Formation and Source Contributions over East China in Summertime. Environmental Pollution, 306: 119383.  https://doi.org/10.1016/j.envpol.2022.119383 
						
					 | 
			
| 
					 Li, M. M., Wang, T. J., Shu, L., et al., 2021. Rising Surface Ozone in China from 2013 to 2017: A Response to the Recent Atmospheric Warming or Pollutant Controls? Atmospheric Environment, 246: 118130.  https://doi.org/10.1016/j.atmosenv.2020.118130 
						
					 | 
			
| 
					 Li, M., Liu, H., Geng, G. N., et al., 2017. Anthropogenic Emission Inventories in China: A Review. National Science Review, 4(6): 834-866.  https://doi.org/10.1093/nsr/nwx150 
						
					 | 
			
| 
					 Li, X. B., Yuan, B., Wang, S. H., et al., 2022b. Variations and Sources of Volatile Organic Compounds (VOCs) in Urban Region: Insights from Measurements on a Tall Tower. Atmospheric Chemistry & Physics, 22(16): 10567-10587.  https://doi.org/10.5194/acp-22-10567-2022 
						
					 | 
			
| 
					 Li, Y. F., Wu, Z. H., Ji, Y. Y., et al., 2024. Comparison of the Ozone Formation Mechanisms and VOCs Apportionment in Different Ozone Pollution Episodes in Urban Beijing in 2019 and 2020: Insights for Ozone Pollution Control Strategies. Science of The Total Environment, 908: 168332.  https://doi.org/10.1016/j.scitotenv.2023.168332 
						
					 | 
			
| 
					 Lin, Y. L., Farley, R. D., Orville, H. D., 1983. Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22(6): 1065-1092. https://doi.org/10.1175/1520-0450(1983)0221065:bpotsf>2.0.co;2 doi:  10.1175/1520-0450(1983)0221065:bpotsf>2.0.co;2 
						
					 | 
			
| 
					 Liu, J. W., Li, X., Tan, Z. F., et al., 2021. Assessing the Ratios of Formaldehyde and Glyoxal to NO2 as Indicators of O3-NOx-VOC Sensitivity. Environmental Science & Technology, 55(16): 10935-10945.  https://doi.org/10.1021/acs.est.0c07506 
						
					 | 
			
| 
					 Liu, Y. M., Hong, Y. Y., Fan, Q., et al., 2017. Source-Receptor Relationships for PM2.5 during Typical Pollution Episodes in the Pearl River Delta City Cluster, China. Science of The Total Environment, 596: 194-206.  https://doi.org/10.1016/j.scitotenv.2017.03.255 
						
					 | 
			
| 
					 Ma, W., Feng, Z. M., Zhan, J. L., et al., 2022. Influence of Photochemical Loss of Volatile Organic Compounds on Understanding Ozone Formation Mechanism. Atmospheric Chemistry and Physics, 22(7): 4841-4851.  https://doi.org/10.5194/acp-22-4841-2022 
						
					 | 
			
| 
					 Mo, Z. W., Shao, M., Lu, S. H., 2016. Compilation of a Source Profile Database for Hydrocarbon and OVOC Emissions in China. Atmospheric Environment, 143: 209-217.  https://doi.org/10.1016/j.atmosenv.2016.08.025 
						
					 | 
			
| 
					 Moeller, D., 2004. The Tropospheric Ozone Problem. Archives of Industrial Hygiene and Toxicology, 55(1): 11-23. 
						
					 | 
			
| 
					 Noh, Y., Cheon, W. G., Hong, S. Y., et al., 2003. Improvement of the K-Profile Model for the Planetary Boundary Layer Based on Large Eddy Simulation Data. Boundary-Layer Meteorology, 107(2): 401-427.  https://doi.org/10.1023/A:1022146015946 
						
					 | 
			
| 
					 Pan, R. X., Wang, F. T., Zhao, X. Y., et al., 2024. Modeling Study on Ozone Pollution Event Control Pathways in a Typical Industrial City. Acta Scientiae Circumstantiae, 44(9): 21-31 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Pan, W. J., Gong, S. L., Lu, K. D., et al., 2023. Multi-Scale Analysis of the Impacts of Meteorology and Emissions on PM2.5 and O3 Trends at Various Regions in China from 2013 to 2020 3. Mechanism Assessment of O3 Trends by a Model. Science of The Total Environment, 857: 159592.  https://doi.org/10.1016/j.scitotenv.2022.159592 
						
					 | 
			
| 
					 Qi, S. H., Sheng, G. Y., Fu, J. M., et al., 2001. PAHs in Aerosols at Dinghushan Natural Protection Zone. Earth Science, 26(1): 83-87 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Sarwar, G., Luecken, D., Yarwood, G., et al., 2008. Impact of an Updated Carbon Bond Mechanism on Predictions from the CMAQ Modeling System: Preliminary Assessment. Journal of Applied Meteorology and Climatology, 47(1): 3-14. doi:  10.1175/2007JAMC1393.1 
						
					 | 
			
| 
					 Sharma, S., Chatani, S., Mahtta, R., et al., 2016. Sensitivity Analysis of Ground Level Ozone in India Using WRF-CMAQ Models. Atmospheric Environment, 131: 29-40.  https://doi.org/10.1016/j.atmosenv.2016.01.036 
						
					 | 
			
| 
					 Shen, L. J., Hu, W. Y., Zhao, T. L., et al., 2021. Changes in the Distribution Pattern of PM2.5 Pollution over Central China. Remote Sensing, 13(23): 4855.  https://doi.org/10.3390/rs13234855 
						
					 | 
			
| 
					 Shi, Y. Q., Xi, Z. Y., Lyu, D. Q., et al., 2023. Sector-Based Volatile Organic Compound Emission Characteristics and Reduction Perspectives for Coating Materials Manufacturing in China. Journal of Cleaner Production, 394: 136407.  https://doi.org/10.1016/j.jclepro.2023.136407 
						
					 | 
			
| 
					 Simayi, M., Hao, Y. F., Li, J., et al., 2021. Historical Volatile Organic Compounds Emission Performance and Reduction Potentials in China's Petroleum Refining Industry. Journal of Cleaner Production, 292: 125810.  https://doi.org/10.1016/j.jclepro.2021.125810 
						
					 | 
			
| 
					 Simayi, M., Shi, Y. Q., Xi, Z. Y., et al., 2022. Emission Trends of Industrial VOCs in China since the Clean Air Action and Future Reduction Perspectives. Science of The Total Environment, 826: 153994.  https://doi.org/10.1016/j.scitotenv.2022.153994 
						
					 | 
			
| 
					 Stevenson, D. S., Dentener, F. J., Schultz, M. G., et al., 2006. Multimodel Ensemble Simulations of Present-Day and Near-Future Tropospheric Ozone. Journal of Geophysical Research: Atmospheres, 111(D8): D08301.  https://doi.org/10.1029/2005JD006338 
						
					 | 
			
| 
					 Sun, J., Shen, Z. X., Zhang, L. M., et al., 2019. Volatile Organic Compounds Emissions from Traditional and Clean Domestic Heating Appliances in Guanzhong Plain, China: Emission Factors, Source Profiles, and Effects on Regional Air Quality. Environment International, 133: 105252.  https://doi.org/10.1016/j.envint.2019.105252 
						
					 | 
			
| 
					 Veld, M. I., Seco, R., Reche, C., et al., 2024. Identification of Volatile Organic Compounds and Their Sources Driving Ozone and Secondary Organic Aerosol Formation in NE Spain. Science of The Total Environment, 906: 167159.  https://doi.org/10.1016/j.scitotenv.2023.167159 
						
					 | 
			
| 
					 Wang, H. L., Sun, S. M., Nie, L., et al., 2023a. A Review of Whole-Process Control of Industrial Volatile Organic Compounds in China. Journal of Environmental Sciences, 123: 127-139.  https://doi.org/10.1016/j.jes.2022.02.037 
						
					 | 
			
| 
					 Wang, J. Y., Gao, A. F., Li, S. R., et al., 2023b. Regional Joint PM2.5-O3 Control Policy Benefits Further Air Quality Improvement and Human Health Protection in Beijing-Tianjin-Hebei and Its Surrounding Areas. Journal of Environmental Sciences, 130: 75-84.  https://doi.org/10.1016/j.jes.2022.06.036 
						
					 | 
			
| 
					 Wang, P. F., Qiao, X., Zhang, H. L., 2020. Modeling PM2.5 and O3 with Aerosol Feedbacks Using WRF/Chem over the Sichuan Basin, Southwestern China. Chemosphere, 254: 126735.  https://doi.org/10.1016/j.chemosphere.2020.126735 
						
					 | 
			
| 
					 Wang, R. P., Wang, X. Q., Cheng, S. Y., et al., 2022. Emission Characteristics and Reactivity of Volatile Organic Compounds from Typical High-Energy-Consuming Industries in North China. Science of The Total Environment, 809: 151134.  https://doi.org/10.1016/j.scitotenv.2021.151134 
						
					 | 
			
| 
					 Wang, R. Y., Wang, L. L., Xue, M., et al., 2023c. New Insight into Formation Mechanism, Source and Control Strategy of Severe O3 pollution: The Case from Photochemical Simulation in the Wuhan Metropolitan Area, Central China. Atmospheric Research, 284: 106605.  https://doi.org/10.1016/j.atmosres.2023.106605 
						
					 | 
			
| 
					 Wang, T., Xue, L. K., Brimblecombe, P., et al., 2017. Ozone Pollution in China: A Review of Concentrations, Meteorological Influences, Chemical Precursors, and Effects. Science of The Total Environment, 575: 1582-1596.  https://doi.org/10.1016/j.scitotenv.2016.10.081 
						
					 | 
			
| 
					 Wei, J., Li, Z. Q., Li, K., et al., 2022a. Full-Coverage Mapping and Spatiotemporal Variations of Ground-Level Ozone (O3) Pollution from 2013 to 2020 across China. Remote Sensing of Environment, 270: 112775.  https://doi.org/10.1016/j.rse.2021.112775 
						
					 | 
			
| 
					 Wei, W., Li, Y., Ren, Y. T., et al., 2019. Sensitivity of Summer Ozone to Precursor Emission Change over Beijing during 2010-2015: A WRF-Chem Modeling Study. Atmospheric Environment, 218: 116984.  https://doi.org/10.1016/j.atmosenv.2019.116984 
						
					 | 
			
| 
					 Wei, W., Lv, Z. F., Li, Y., et al., 2018. A WRF-Chem Model Study of the Impact of VOCs Emission of a Huge Petro-Chemical Industrial Zone on the Summertime Ozone in Beijing, China. Atmospheric Environment, 175: 44-53.  https://doi.org/10.1016/j.atmosenv.2017.11.058 
						
					 | 
			
| 
					 Wei, W., Wang, S. X., Hao, J. M., et al., 2011. Projection of Anthropogenic Volatile Organic Compounds (VOCs) Emissions in China for the Period 2010-2020. Atmospheric Environment, 45(38): 6863-6871.  https://doi.org/10.1016/j.atmosenv.2011.01.013 
						
					 | 
			
| 
					 Wei, W., Wang, X. F., Wang, X. Q., et al., 2022b. Attenuated Sensitivity of Ozone to Precursors in Beijing-Tianjin-Hebei Region with the Continuous NOx Reduction within 2014-2018. Science of The Total Environment, 813: 152589.  https://doi.org/10.1016/j.scitotenv.2021.152589 
						
					 | 
			
| 
					 Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., et al., 2011. The Fire Inventory from Ncar (Finn): A High Resolution Global Model to Estimate the Emissions from Open Burning. Geoscientific Model Development, 4(3): 625-641. doi:  10.5194/gmd-4-625-2011 
						
					 | 
			
| 
					 Wu, D., Ding, X., Li, Q., et al., 2019. Pollutants Emitted from Typical Chinese Vessels: Potential Contributions to Ozone and Secondary Organic Aerosols. Journal of Cleaner Production, 238: 117862.  https://doi.org/10.1016/j.jclepro.2019.117862 
						
					 | 
			
| 
					 Wu, T. R., Cui, Y. Y., Lian, A. P., et al., 2023. Vehicle Emissions of Primary Air Pollutants from 2009 to 2019 and Projection for the 14th Five-Year Plan Period in Beijing, China. Journal of Environmental Sciences, 124: 513-521.  https://doi.org/10.1016/j.jes.2021.11.038 
						
					 | 
			
| 
					 Wu, W. J., Zhao, B., Wang, S. X., et al., 2017. Ozone and Secondary Organic Aerosol Formation Potential from Anthropogenic Volatile Organic Compounds Emissions in China. Journal of Environmental Sciences, 53: 224-237.  https://doi.org/10.1016/j.jes.2016.03.025 
						
					 | 
			
| 
					 Xuan, L. C., Ma, Y. N., Xing, Y. F., et al., 2021. Source, Temporal Variation and Health Risk of Volatile Organic Compounds (VOCs) from Urban Traffic in Harbin, China. Environmental Pollution, 270: 116074.  https://doi.org/10.1016/j.envpol.2020.116074 
						
					 | 
			
| 
					 Xue, Y. F., Tian, H. Z., Yan, J., et al., 2016. Temporal Trends and Spatial Variation Characteristics of Primary Air Pollutants Emissions from Coal-Fired Industrial Boilers in Beijing, China. Environmental Pollution, 213: 717-726.  https://doi.org/10.1016/j.envpol.2016.03.047 
						
					 | 
			
| 
					 Yang, J. H., Kang, S. C., Ji, Z. M., et al., 2020. Investigation of Variations, Causes and Component Distributions of PM2.5 Mass in China Using a Coupled Regional Climate-Chemistry Model. Atmospheric Pollution Research, 11(2): 319-331.  https://doi.org/10.1016/j.apr.2019.11.005 
						
					 | 
			
| 
					 Yin, D. J., Song, Q., Guo, Y. X., et al., 2025. Regional Transport Characteristics of PM2.5 Pollution Events in Beijing during 2018-2021. Journal of Environmental Sciences, 152: 503-515.  https://doi.org/10.1016/j.jes.2024.05.044 
						
					 | 
			
| 
					 You, G. Y., Liu, H. F., Sun, R., et al., 2023. Characterizing VOCs Emissions of Five Packaging and Printing Enterprises in China and the Emission Reduction Potential of This Industry. Journal of Cleaner Production, 420: 138445.  https://doi.org/10.1016/j.jclepro.2023.138445 
						
					 | 
			
| 
					 Young, P. J., Archibald, A. T., Bowman, K. W., et al., 2013. Pre-Industrial to End 21st Century Projections of Tropospheric Ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(4): 2063-2090.  https://doi.org/10.5194/acp-13-2063-2013 
						
					 | 
			
| 
					 Zhai, S. X., Jacob, D. J., Wang, X., et al., 2019. Fine Particulate Matter (PM2.5) Trends in China, 2013-2018: separating Contributions from Anthropogenic Emissions and Meteorology. Atmospheric Chemistry and Physics, 19(16): 11031-11041.  https://doi.org/10.5194/acp-19-11031-2019 
						
					 | 
			
| 
					 Zhang, G. F., Fei, B., Xiu, G. L., 2021. Characteristics of Volatile Organic Compound Leaks from Equipment Components: A Study of the Pharmaceutical Industry in China. Sustainability, 13(11): 6274.  https://doi.org/10.3390/su13116274 
						
					 | 
			
| 
					 Zhang, X. Y., Wang, X. Q., Wang, C. D., et al., 2023. Ozone Sensitivity and Precursor Emission Reduction Scheme in Baoding City in Summer. China Environmental Science, 43(6): 2703-2713 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Zheng, B., Tong, D., Li, M., et al., 2018. Trends in China's Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmospheric Chemistry & Physics, 18(19): 14095-14111.  https://doi.org/10.5194/acp-18-14095-2018 
						
					 | 
			
| 
					 Zheng, C. H., Shen, J. L., Zhang, Y. X., et al., 2017. Quantitative Assessment of Industrial VOC Emissions in China: Historical Trend, Spatial Distribution, Uncertainties, and Projection. Atmospheric Environment, 150: 116-125.  https://doi.org/10.1016/j.atmosenv.2016.11.023 
						
					 | 
			
| 
					 Zhou, D. R., Liu, Y., Gao, J., et al., 2023. Assessment of Ozone Sensitivity and Emission Reduction Scenarios in Typical Pollution Processes in Eastern China. Transactions of Atmospheric Sciences, 46(5): 667-678 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhu, B., Han, Y., Wang, C., et al., 2019. Understanding Primary and Secondary Sources of Ambient Oxygenated Volatile Organic Compounds in Shenzhen Utilizing Photochemical Age-Based Parameterization Method. Journal of Environmental Sciences, 75: 105-114.  https://doi.org/10.1016/j.jes.2018.03.008 
						
					 | 
			
| 
					 Zhu, J. L., Penner, J. E., Lin, G. X., et al., 2017. Mechanism of SOA Formation Determines Magnitude of Radiative Effects. Proceedings of the National Academy of Sciences of the United States of America, 114(48): 12685-12690.  https://doi.org/10.1073/pnas.1712273114 
						
					 | 
			
| 
					 Ziemann, P. J., Atkinson, R., 2012. Kinetics, Products, and Mechanisms of Secondary Organic Aerosol Formation. Chemical Society Reviews, 41(19): 6582-6605.  https://doi.org/10.1039/C2CS35122F 
						
					 | 
			
| 
					 潘瑞欣, 王芳婷, 赵秀颖, 等, 2024. 典型工业城市臭氧污染事件调控路径模拟研究. 环境科学学报, 44(9): 21-31. 
					
					 | 
			
| 
					 祁士华, 盛国英, 傅家谟, 等, 2001. 鼎湖山自然保护区大气气溶胶中的PAHs. 地球科学, 26(1): 83-87. http://www.earth-science.net/article/id/814 
					
					 | 
			
| 
					 张新宇, 王晓琦, 王传达, 等, 2023. 保定市夏季臭氧生成敏感性及前体物减排方案. 中国环境科学, 43(6): 2703-2713. 
					
					 | 
			
| 
					 周德荣, 刘祎, 高健, 等, 2023. 中国东部地区典型臭氧污染过程防控敏感性及减排情景研究. 大气科学学报, 46(5): 667-678. 
					
					 |