• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 4
    Apr.  2025
    Turn off MathJax
    Article Contents
    Ke Xue, Yang Wenjun, Zeng Wen, Zhang Zongyan, Zhang Jinming, Song Taizhong, Li Jing, Zhang Xiaojin, 2025. Redefinition of Stratigraphic Sequence of Type Section of Pleistocene Qigequan Formation in Qaidam Basin: New Evidence from Lithologic and Petrographic Studies and ESR Dating. Earth Science, 50(4): 1514-1530. doi: 10.3799/dqkx.2024.096
    Citation: Ke Xue, Yang Wenjun, Zeng Wen, Zhang Zongyan, Zhang Jinming, Song Taizhong, Li Jing, Zhang Xiaojin, 2025. Redefinition of Stratigraphic Sequence of Type Section of Pleistocene Qigequan Formation in Qaidam Basin: New Evidence from Lithologic and Petrographic Studies and ESR Dating. Earth Science, 50(4): 1514-1530. doi: 10.3799/dqkx.2024.096

    Redefinition of Stratigraphic Sequence of Type Section of Pleistocene Qigequan Formation in Qaidam Basin: New Evidence from Lithologic and Petrographic Studies and ESR Dating

    doi: 10.3799/dqkx.2024.096
    • Received Date: 2024-06-06
      Available Online: 2025-05-10
    • Publish Date: 2025-04-25
    • In response to the previous problems of unclear lithologic and petrographic meanings of the Qigequan Formation in Qaidam Basin, especially the controversial issue of whether its depositional age extends to the Middle Pleistocene. In this paper it re-conducted a fine study of the auxiliary type section (Section Y) of the Qigequan Formation located in the north of the type section (Section Z) in the Qigequanzi area of Mangya City, Qinghai Province. It obtained for the first time four ESR ages from the bottom to the top of the section, which are 562±64 ka, 511±90 ka, 438± 32 ka, and 379±33 ka, respectively, further confirming the existence of the Middle Pleistocene sedimentary sequences in the Qigequan Formation. Based on a detailed analysis of the lithological and petrographic assemblage of the Section Y and Section Z, the Qigequanzi Section is divided into two parts, the upper fine and the lower coarse.The lower part of the section is assigned to Member 1 of Qigequan Formation for the mud-sand lake sequences, and the upper part is assigned to the Member 2 of Qigequan Formation for the gravel-sand rhythmic sequence of the alluvial fan stratigraphy.Combined with the paleomagnetic age obtained in Section Z and ESR ages obtained in Section Y, the depositional age of the Member 1 of Qigequan Formation is limited mainly to the Early Pleistocene, and that of the Member 2 of Qigequan Formation mainly to the Middle Pleistocene.Although Member 1 of the Qigequan Formation is at the lower part and Member 2 is at the upper part, there is a phase transition between the late Early Pleistocene and the early Middle Pleistocene, which means that the stratigraphic interface between the two members is time-disconnected. In this paper it compares the type section of Qigequan Formation with other contemporaneous stratum in the Qaidam Basin, and provides new stratigraphic materials for the analysis of Quaternary petrographic paleogeography in the region as well as for the exploration of Quaternary potassium salts and other important minerals.

       

    • loading
    • All China Commission of Stratigraphy, 1963. Compilation of Academic Reports of the National Stratigraphic Conference: Cenozoic in China. Science Press, Beijing (in Chinese).
      Bureau of Geological Exploration & Development of Qinghai Province, 2007. Geological Map of Qinghai Province (1∶1 000 000) and Instruction. Geological Publishing House, Beijing (in Chinese).
      Bureau of Geology and Minerals of Qinghai Province, 1991. Regional Geology of Qinghai Province. Geological Publishing House, Beijing(in Chinese).
      Chen, A. D., Zheng, M. P., Song, G., et al., 2020. Evaporite Deposits in the Qaidam Basin and Their Response to Quaternary Glacial Climates since Marine Oxygen Isotope Stage 6 (MIS6). Geological Review, 66(3): 611-624 (in Chinese with English abstract).
      Chen, Y., Xia, X. M., Li, Y. N., et al., 2024. Lacustrine Sedimentary Characteristics of the Pliocene Xiayoushashan Formation in Xianshuiquan Area, Western Qaidam Basin: A Case Study from Cored Interval of Well Xiandong 1. Acta Sedimentologica Sinica, 42(2): 619-631 (in Chinese with English abstract). http://openurl.ebsco.com/contentitem/doi:10.14027%2Fj.issn.1000-0550.2022.076?sid=ebsco:plink:crawler&id=ebsco:doi:10.14027%2Fj.issn.1000-0550.2022.076
      Fan, X. L., Yu, P. H., Zeng, L., et al., 2016. The Biostratigraphic and Chronological Research of Cenozoic in the Qaidam Basin, Northwest China. Acta Micropalaeontologica Sinica, 33(4): 363-378 (in Chinese with English abstract).
      Fang, X. M., Zhang, W. L., Meng, Q. Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293-306. https://doi.org/10.1016/j.epsl.2007.03.042
      Grün, R., 1989. Electron Spin Resonance (ESR) Dating. Quaternary International, 1: 65-109. https://doi.org/10.1016/1040-6182(89)90010-4
      Guo, X., Shen, J. X., Liu, L., et al., 2024. Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques. Earth Science, 49(7): 2526-2538 (in Chinese with English abstract).
      Hou, Y. F., Song, B. W., Li, X. F., et al., 2024 First Record of Cyclocarya from the Early Oligocene Qaidam Basin, North Tibet: Implications for the Paleogeography and Paleoecology. Journal of Earth Science, 35(1): 201-211. https://doi.org/10.1007/s12583-121-1580-2
      Huang, Q., Meng, Z. Q., Liu, H. L., 1990. Preliminary Study on Paleoclimate Fluctuation Model in Qarhan Lake Area of Qaidam Basin. Science in China(Ser. B), 20(6): 652–663 (in Chinese).
      Li, J., L., Fang, X. M., Ma, H. Z., et al., 1996. Geomorphological and Environmental Evolution in the Upper Reaches of the Yellow River during the Late Cenozoic. Science China Earth Sciences, 39(4): 380-390. https://doi.org/10.1360/YD1996-39-4-380
      Li, J. Y., Zhang, J., 2015. Map of Large-Scale Structural Deformation of China (1∶2 500 000) and Instruction. Geological Publishing House, Beijing (in Chinese).
      Lin, P. X., Zhang, X., Lin, C. M., et al., 2018. Formation Mechanism and Factors on the Accumulations of the Quaternary Biogenic Gas in the Nuobei Area in the Sanhu Depression, Qaidam Basin. Geological Journal of China Universities, 24(6): 810-821 (in Chinese with English abstract).
      Liu, C. R., Yin, G. M., Gao, L., et al., 2011. Research Advances in ESR Geochronology of Quaternary Deposits. Seismology and Geology, 33(2): 490-498 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2011.02.022
      Liu, C. R., Yin, G. M., Grün, R., 2013. Research Progress of the Resetting Features of Quartz ESR Signal. Advances in Earth Science, 28(1): 24-30 (in Chinese with English abstract).
      Liu, C. R., Yin, G. M., Han, F., et al., 2016. ESR Dating Methodology and Its Application in Dating Quaternary Terrestrial Sediments. Quaternary Sciences, 36(5): 1236-1245 (in Chinese with English abstract).
      Liu, Z. C., Sun, S. Y., Yang, F., et al., 1990. Quaternary Stratigraphy and Its Chronological Analysis in Sanhu Area of Qaidam Basin. Science in China(Ser. B), 20(11): 1202-1212 (in Chinese).
      Luan, S. L., 2020. Sedimentary Characteristics and Model of Quaternary Qigequan Formation in Quanji Section of Qaidam Basin. Natural Gas Geoscience, 31(6): 800-808 (in Chinese with English abstract). http://openurl.ebsco.com/contentitem/doi:10.11764%2Fj.issn.1672-1926.2020.05.007?sid=ebsco:plink:crawler&id=ebsco:doi:10.11764%2Fj.issn.1672-1926.2020.05.007
      Luo, Z., Su, Q. D., Wang, Z., et al., 2018. Orbital Forcing of Plio-Pleistocene Climate Variation in a Qaidam Basin Lake Based on Paleomagnetic and Evaporite Mineralogic Analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 31-39. https://doi.org/10.1016/j.palaeo.2017.09.022
      Miao, Q., 2021. Carbon and Oxygen Isotope Records and Paleoenvironment Research in Dalangtan Area of Qaidam Basin since Pliocene(Dissertation). Hebei GEO University, Shijiazhuang (in Chinese with English abstract).
      Odom, A. L., Rink, W. J., 1989. Natural Accumulation of Schottky-Frenkel Defects: Implications for a Quartz Geochronometer. Geology, 17(1): 55. https://doi.org/10.1130/0091-7613(1988)0170055:naosfd>2.3.co;2 doi: 10.1130/0091-7613(1988)0170055:naosfd>2.3.co;2
      Pan, J. W., Li, H. B., Sun, Z. M., et al., 2015. Tectonic Responses in the Qaidam Basin Induced by Cenozoic Activities of the Altyn Tagh Fault. Acta Petrologica Sinica, 31(12): 3701-3712 (in Chinese with English abstract).
      Shen, Z. S., 1993. Continent-Ocean Comparison of Climatostratigraphic Sequence in Qaidam Basin. Management & Strategy of Qinghai Land & Resources, (2): 48-56 (in Chinese with English abstract).
      Shen, Z. S., 1993. The Division and Sedimentary Environment of Quaternary Salt-Bearing Strata in Qaidam Basin. Geological Publishing House, Beijing (in Chinese).
      Shi, Y., Liu, W. H., Qiu, L. W., et al., 2024. Tectonic-Sedimentary Evolution of the Shizigou and Qigequan Formations in Qigequan Anticline in Qaidam Basin: Implications for the Mineralization of Sandstone-Type Uranium Deposits. Journal of Palaeogeography, 26(3): 700-713 (in Chinese with English abstract).
      Song, B. W., Zhang, K. X., Xu, Y. D., et al., 2022. Neogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 47(4): 1143-1161 (in Chinese with English abstract).
      Stratigraphic Table of Qinghai Province Preparation Team, 1980. Regional Stratigraphic Table of Northwest China, Qinghai Volume. Geological Publishing House, Beijing (in Chinese).
      Sui, L. W., Fang, S. H., Sun, Y. H., et al., 2014. The Tectonic Evolution and Accumulation Controlling Characteristics of Shizigou-Yingdong Structural of Western Qaidam Basin. Earth Science Frontiers, 21(1): 261-270(in Chinese with English abstract).
      Sun, L., Deng, C. L., Hao, Q. Z., et al., 2021. Lithostratigraphic Subdivision and Correlation of the Quaternary in China. Journal of Stratigraphy, 45(3): 440-459 (in Chinese with English abstract).
      Sun, Z. C., Qiao, Z. Z., Jing, M. C., et al., 2006. Qigequan Formation and Quaternary-Neogene Boundary in Qaidam Basin. Oil & Gas Geology, 27(3): 422-432 (in Chinese with English abstract).
      Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic. Science China Earth Sciences, 54(1): 29-44. https://doi.org/10.1007/s11430-010-4110-0
      Wang, J., Xi, P., Liu, Z. C., et al., 1996. Cenozoic Climatic and Topographical Changes in the Western Qaidam Basin. Geological Review, 42(2): 166-173 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1996.02.009
      Wang, W. T., Zhang, P. Z., Duan, L., et al., 2022. Cenozoic Stratigraphic Chronology and Sedimentary-Tectonic Evolution of the Qaidam Basin. Chinese Science Bulletin, 67(S2): 3452-3475 (in Chinese).
      Wang, Y., Zheng, M. P., Ling, Y., et al., 2024. Quaternary Integrative Stratigraphy, Biotas, and Paleogeographical Evolution of the Qinghai-Tibetan Plateau and Its Surrounding Areas. Scientia Sinica (Terrae), 54(4): 1379-1410 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG20240318001.htm
      Wang, Y. H., 2016. Study on Quaternary Sedimentary Environment of Mahai Salt Lake in Qaidam Basin of Qinghai Province(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wei, X. J., Shao, C. D., Wang, M. L., 1993. Material Constituents, Depositional Features and Formation Conditions of Potassium-Rich Salt Lakes in Western Qaidam Basin. Geological Publishing House, Beijing (in Chinese).
      Yan, W. Q., 2020. Sedimentary Environment and Provenance Analysis of Neogene-Quaternary in Yuejin-Qigequan Area, Western Qaidam Basin (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Yang, F., Sun, Z. C., Qiao, Z. Z., et al., 2004. Revision of the Diagnosis of the Genus Qinghaicypris Huang, 1979 (Ostracoda) and the Environmental Significance of Its Type Species. Acta Micropalaeontologica Sinica, 21(4): 367-381 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0674.2004.04.002
      Yang, P., Jiang, X. Q., Tie, C. W., et al., 2013. Miocene Fossil Cyprideis Succession from the Western Qaidam Basin and Its Paleoecological Features and High-Resolution Sequence Stratigraphic Subdivision. Acta Micropalaeontologica Sinica, 30(1): 42-48 (in Chinese with English abstract).
      Zeller, E. J., Levy, P. W., Mattern, P. L., 1967. Geologic Dating by Electron Spin Resonance. Radioactive Dating and Methods of Low-Level Counting. International Atomic Energy Agency, Vienna, 531-540.
      Zhang, K. X., Wang, G. C., Cao, K., et al., 2008. Main Cenozoic Uplift Events of Qinghai-Tibet Plateau: Sedimentary Response and Thermochronological Records. Science in China (Series D), 38(12): 1575-1588 (in Chinese). doi: 10.3321/j.issn:1006-9267.2008.12.011
      Zhang, K. X., Wang, G. C., Chen, F. N., et al., 2007. Coupling between the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene-Neogene. Earth Science, 32(5): 583-597 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2007.05.001
      Zhang, K. X., Wang, G. C., Hong, H. L., et al., 2013a. The Study of the Cenozoic Uplift in the Tibetan Plateau: A Review. Geological Bulletin of China, 32(1): 1-18 (in Chinese with English abstract).
      Zhang, K. X., Wang, G. C., Luo, M. S., et al., 2013b. Palaeogeographic Map and Description of Cenozoic Tectonic Lithofacies in Qinghai-Tibet Plateau and Its Adjacent Areas: 1∶ 3 000 000. Geological Publishing House, Beijing, 299(in Chinese).
      Zhang, K. X., Wang, G. C., Ji, J. L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science China Earth Sciences, 53(9): 1271-1294. https://doi.org/10.1007/s11430-010-4048-2
      Zhang, W. L., Fang, X. M., Song, C. H., et al., 2013. Late Neogene Magnetostratigraphy in the Western Qaidam Basin (NE Tibetan Plateau) and Its Constraints on Active Tectonic Uplift and Progressive Evolution of Growth Strata. Tectonophysics, 599: 107-116. https://doi.org/10.1016/j.tecto.2013.04.010
      Zhou, M. L., Min, L. R., et al., 2000. The China Stratigraphy: Quaternary. Geological Publishing House, Beijing (in Chinese).
      陈安东, 郑绵平, 宋高, 等, 2020. 晚第四纪MIS6以来柴达木盆地成盐作用对冰期气候的响应. 地质论评, 66(3): 611-624.
      陈琰, 夏晓敏, 李雅楠, 等, 2024. 柴西咸水泉地区下油砂山组湖相沉积特征: 以咸东1井取心段为例. 沉积学报, 42(2): 619-631.
      樊小龙, 余平辉, 曾亮, 等, 2016. 柴达木盆地新生界生物地层年代研究. 微体古生物学报, 33(4): 363-378.
      郭雪, 申建勋, 刘立, 等, 2024. 柴达木盆地典型类火星地貌表层土壤的矿物与元素多谱学表征. 地球科学, 49(7): 2526-2538. doi: 10.3799/dqkx.2024.027
      黄麒, 孟昭强, 刘海玲, 1990. 柴达木盆地察尔汗湖区古气候波动模式的初步研究. 中国科学(B辑), 20(6): 652-663.
      李锦轶, 张进, 2015. 中国大型变形构造图及说明书(1∶2 500 000). 北京: 地质出版社.
      林培贤, 张霞, 林春明, 等, 2018. 柴达木盆地三湖坳陷诺北地区第四纪生物气形成及影响因素. 高校地质学报, 24(6): 810-821.
      刘春茹, 尹功明, 高璐, 等, 2011. 第四纪沉积物ESR年代学研究进展. 地震地质, 33(2): 490-498. doi: 10.3969/j.issn.0253-4967.2011.02.022
      刘春茹, 尹功明, 韩非, 等, 2016. 石英ESR测年法在第四纪陆相沉积物测年中的应用. 第四纪研究, 36(5): 1236-1245.
      刘春茹, 尹功明, Rainer Grün, 2013. 石英ESR测年信号衰退特征研究进展. 地球科学进展, 28(1): 24-30.
      刘泽纯, 孙世英, 杨藩, 等, 1990. 柴达木盆地三湖地区第四纪地层学和其年代学分析. 中国科学(B辑), 20(11): 1202-1212.
      栾守亮, 2020. 柴达木盆地全吉剖面第四系七个泉组沉积特征及沉积模式. 天然气地球科学, 31(6): 800-808.
      苗青, 2021. 柴达木盆地大浪滩地区上新世以来的碳氧同位素记录及古环境研究(硕士学位论文). 石家庄: 河北地质大学.
      潘家伟, 李海兵, 孙知明, 等, 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应. 岩石学报, 31(12): 3701-3712.
      青海省地层表编写小组, 1980. 西北地区区域地层表: 青海省分册. 北京: 地质出版社.
      青海省地质矿产局, 1991. 青海省区域地质志. 北京: 地质出版社.
      青海省地质矿产勘察开发局, 2007. 青海省地质图(1∶1 000 000)及说明书. 北京: 地质出版社.
      全国地层委员会, 1963. 全国地层会议学术报告汇编: 中国的新生界. 北京: 科学出版社.
      沈振枢, 1993. 柴达木盆地(水6孔)气侯地层序列的海陆对比. 青海地质, (2): 48-56.
      沈振枢, 程果, 乐昌硕, 1993. 柴达木盆地第四纪含盐地层划分及沉积环境. 北京: 地质出版社.
      施源, 刘卫红, 邱隆伟, 等, 2024. 柴达木盆地七个泉背斜狮子沟组与七个泉组构造-沉积演化及对砂岩型铀矿成矿的启示. 古地理学报, 26(3): 700-713.
      宋博文, 张克信, 徐亚东, 等, 2022. 中国新近纪构造-地层区划及地层格架. 地球科学, 47(4): 1143-1161. doi: 10.3799/dqkx.2021.072
      隋立伟, 方世虎, 孙永河, 等, 2014. 柴达木盆地西部狮子沟-英东构造带构造演化及控藏特征. 地学前缘, 21(1): 261-270.
      孙蕗, 邓成龙, 郝青振, 等, 2021. 中国第四纪岩石地层划分和对比. 地层学杂志, 45(3): 440-459.
      孙镇城, 乔子真, 景明昌, 等, 2006. 柴达木盆地七个泉组和第四系-新近系的分界. 石油与天然气地质, 27(3): 422-432. doi: 10.3321/j.issn:0253-9985.2006.03.019
      王建, 席萍, 刘泽纯, 等, 1996. 柴达木盆地西部新生代气候与地形演变. 地质论评, 42(2): 166-173.
      王伟涛, 张培震, 段磊, 等, 2022. 柴达木盆地新生代地层年代框架与沉积-构造演化. 科学通报, 67(S2): 3452-3475.
      王永, 郑绵平, 凌媛, 等, 2024. 青藏高原及其周边第四纪综合地层、生物群与古地理演化. 中国科学(地球科学), 54(4): 1379-1410.
      王宇涵, 2016. 青海柴达木盆地马海盐湖第四纪沉积环境研究(硕士学位论文). 北京: 中国地质大学(北京).
      魏新俊, 邵长铎, 王弭力, 1993. 柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究. 北京: 地质出版社.
      晏文权, 2020. 柴达木盆地西部跃进—七个泉地区新近系—第四系沉积环境及物源分析(硕士学位论文). 成都: 成都理工大学.
      杨藩, 孙镇城, 乔子真, 等, 2004. 介形类Qinghaicypris属征的修订及其模式种环境指示意义探讨. 微体古生物学报, 21(4): 367-381.
      杨平, 江小青, 铁成文, 等, 2013. 柴达木盆地西部中新统介形类Cyprideis序列及其古生态特征与高分辨率层序地层划分. 微体古生物学报, 30(1): 42-48.
      张克信, 王国灿, 曹凯, 等, 2008. 青藏高原新生代主要隆升事件: 沉积响应与热年代学记录. 中国科学(D辑), 38(12): 1575-1588.
      张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合. 地球科学, 32(5): 583-597. http://www.earth-science.net/article/id/3518
      张克信, 王国灿, 骆满生, 等, 2013a. 青藏高原及邻区新生代构造岩相古地理图及说明书: 1∶3 000 000. 北京: 地质出版社, 299.
      张克信, 王国灿, 洪汉烈, 等, 2013b. 青藏高原新生代隆升研究现状. 地质通报, 32(1): 1-18.
      周慕林, 闵隆瑞, 等, 2000. 中国地层典: 第四系. 北京: 地质出版社, 63.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (379) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return